机械工程学报 ›› 2021, Vol. 57 ›› Issue (15): 1-14.doi: 10.3901/JME.2021.15.001
• 机器人及机构学 • 下一篇
蔡世波1,2, 陶志成1,2, 万伟伟3, 喻豪勇4, 鲍官军1,2
收稿日期:
2020-10-28
修回日期:
2021-02-04
出版日期:
2021-08-05
发布日期:
2021-11-03
通讯作者:
鲍官军(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为机器人多指灵巧手、仿生操作理论、软体机器人。E-mail:gjbao@zjut.edu.cn
作者简介:
蔡世波,男,1981年出生,博士,副研究员,博士研究生导师。主要研究方向为机器人多指灵巧手、康复机器人。E-mail:ccc@zjut.edu.cn;陶志成,男,1995年出生,硕士研究生。主要研究方向为多指灵巧手设计、抓持与操作理论。E-mail:1059145862@qq.com;万伟伟,男,1985年出生,博士,副教授,博士研究生导师。主要研究方向为机器人操作理论与方法。E-mail:wan@sys.es.osaka-u.ac.jp;喻豪勇,男,1966年出生,博士,副教授,博士研究生导师。主要研究方向为医疗康复机器人、机器人臂手系统。E-mail:bieyhy@nus.edu.sg
基金资助:
CAI Shibo1,2, TAO Zhicheng1,2, WAN Weiwei3, YU Haoyong4, BAO Guanjun1,2
Received:
2020-10-28
Revised:
2021-02-04
Online:
2021-08-05
Published:
2021-11-03
摘要: 机器人多指灵巧手是一种高度灵活、复杂的末端执行器,因其能够模仿人手的各种灵巧抓持和复杂操作能力,半个多世纪以来得到持续的研发投入和广泛关注,备受社会各界期待。综述分析了仿人型机器人多指灵巧手的演化过程、研究与开发现状。从仿生结构、驱动、传动、感知、复合/智能材料、建模与控制等方面分析了机器人多指灵巧手的本体复杂性,在部分功能复现、灵巧操作功能复现和人手功能的增强三个层次上分析了机器人多指灵巧手的应用复杂性,进而论述了基于多指灵巧手的复杂应用简化实现模式,阐明了机器人多指灵巧手的复杂性与易用性的辩证关系。最后从深度仿生、柔性感知技术、操作过程规划与控制策略、成本控制四个方面分析了多指灵巧手本体研究的趋势与挑战。
中图分类号:
蔡世波, 陶志成, 万伟伟, 喻豪勇, 鲍官军. 机器人多指灵巧手的研究现状、趋势与挑战[J]. 机械工程学报, 2021, 57(15): 1-14.
CAI Shibo, TAO Zhicheng, WAN Weiwei, YU Haoyong, BAO Guanjun. Multi-fingered Dexterous Hands: From Simplicity to Complexity and Simplifying Complex Applications[J]. Journal of Mechanical Engineering, 2021, 57(15): 1-14.
[1] 刘辛军, 于靖军, 王国彪, 等. 机器人研究进展与科学挑战[J]. 中国科学基金, 2016, 30(5):425-431. LIU Xinjun, YU Jingjun, WANG Guobiao, et al. Research trend and scientific challenges of robotics[J]. China Science Foundation, 2016, 30(5):425-431. [2] DING Han, YANG Xuejun, ZHENG Nanning, et al. Tri-co robot:A Chinese robotic research initiative for enhanced robot interaction capabilities[J]. National Science Review, 2018, 5(6):799-801. [3] PIAZZA C, GRIOLI G, CATALANO M G, et al. A century of robotic hands[J]. Annual Review of Control Robotics and Autonomous Systems, 2019, 2(1):1-32. [4] 张进华, 王韬, 洪军, 等. 软体机械手研究综述[J]. 机械工程学报, 2017, 53(13):19-28. ZHANG Jinhua, WANG Tao, HONG Jun, et al. Review of soft-bodied manipulator[J]. Journal of mechanical engineering, 2017, 53(13):19-28. [5] 宗光华, 刘海波, 程君实. 机器人技术手册[M]. 北京:科学出版社, 1996. ZONG Guanghua, LIU Haibo, CHENG Junshi. Robotics manual[M]. Beijing:Science Press, 1996. [6] NIE K, WAN W, HARADA K. A hand combining two simple grippers to pick up and arrange objects for assembly[J]. IEEE Robotics and Automation Letters, 2019, 4(2):958-965. [7] HASAN M R, VEPA R J, SHAHEED H, et al. Modelling and control of the Barrett hand for grasping[C]//UKSim-Amss 15th International Conference on Computer Modelling and Simulation, Cambridge, UK, IEEE, 2013:230-235. [8] SUAREZ-RUIZ F, GALIANA I, TENZER Y, et al. Grasp mapping between a 3-finger haptic device and a robotic hand[C]//9th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Berlin, Heidelberg, Springer, 2014, 8618:275-283. [9] SUZUMORI K, IIKURA S, TANAKA H. Applying a flexible microactuator to robotic mechanisms[J]. IEEE Control Systems Magazine, 1992, 12(1):21-27. [10] 鲍官军, 张水波, 陈亮, 等. 基于气动柔性驱动器的球果采摘末端抓持器[J]. 农业机械学报, 2013, 44(5):242-246. BAO Guanjun, ZHANG Shuibo, CHEN Liang, et al. Design of spherical fruit end-grasper based on FPA[J]. Journal of Agricultural Machinery, 2013, 44(5):242-246. [11] BAO Guanjun, MA Xiaolong, LUO Xingyuan, et al. Full compliant continuum robotic finger and its kinematic model[J]. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 2014, 38(M2):389-402. [12] WANG Zhoukui, OR K, HIRAI S. A dual-mode soft gripper for food packaging[J]. Robotics and Autonomous Systems, 2020, 125:103427. [13] BAO Guanjun, FANG Hui, CHEN Lingfeng, et al. Soft robotics:Academic insights and perspectives through bibliometric analysis[J]. Soft Robotics, 2018, 5(3):229-241. [14] ZHAO Huichan, O'BRIEN K, LI Shuo, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1):eaai7529. [15] TOKUJI O. Computer control of multijointed finger system for precise object-handling[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1982, 12(3):289-299. [16] MATTHEW T M, J.KENNETH S, JOEY K P. Robot hands and the mechanics of manipulation[J]. MIT Press:Journal of Dynamic Systems, Measurement, and Control, 1985. [17] JACOBSEN S C, WOOD J E, KNUTTI D F, et al. The UTAH/MIT dextrous hand:Work in progress[J]. The International Journal of Robotics Research, 1984, 3(4):21-50. [18] LOVCHIK C S, DIFTLER M A. The robonaut hand:A dexterous robot hand for space[C]//1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, IEEE, 1999:907-912. [19] HIRZINGER G, FISCHER M, BRUNNER B, et al. Advances in robotics:The DLR experience[J]. International Journal of Robotics Research, 1999, 18(11):1064-1087. [20] LIU Hong, Wu K, MEUSEL P, et al. Multisensory five-finger dexterous hand:The DLR/HIT Hand II[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, IEEE, 2008:3692-3697. [21] MOURI T, KAWASAKI H, YOSHIKAWA K, et al. Anthropomorphic robot hand:Gifu hand III[J]. JRSJ, 2002:1288-1293. [22] KAWASAKI H, KOMATSU T, UCHIYAMA K. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu hand II[J]. IEEE-ASME Transactions on Mechatronics, 2002, 7(3):296-303. [23] SCHMITZ A, PATTACINI U, NORI F, et al. Design, realization and sensorization of the dexterous iCub hand[C]//IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, IEEE, 2010:186-191. [24] LI Miao, HANG Kaiyu, KRAGIC D, et al. Dexterous grasping under shape uncertainty[J]. Robotics and Autonomous Systems, 2016, 75:352-364. [25] BIRGLEN L, LALIBERTE T, GOSSELIN C M. Underactuated robotic hands[M]. Berlin Heidelberg:Springer, 2007. [26] YUN Y, AGARWAL P, FOX J, et al. Accurate torque control of finger joints with UT hand exoskeleton through Bowden cable SEA[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, IEEE, 2016:390-397. [27] MITSUI K, OZAWA R, KOU T. An under-actuated robotic hand for multiple grasps[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, IEEE, 2013:5475-5480. [28] REN Zeyu, ZHOU Chengxu, XIN Songyan, et al. Heri hand:A quasi dexterous and powerful hand with asymmetrical finger dimensions and under actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, IEEE, 2017:322-328. [29] CARROZZA M C, SUPPO C, SEBASTIANI F, et al. The SPRING hand:Development of a self-adaptive prosthesis for restoring natural grasping[J]. Autonomous Robots, 2004, 16(2):125-141. [30] WANG Long, DELPRETO J, BHATTACHARYYA S, et al. A highly-underactuated robotic hand with force and joint angle sensors[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, IEEE, 2011:1380-1385. [31] WISTE T, GOLDFARB M. Design of a simplified compliant anthropomorphic robot hand[J]. 2017 IEEE International Conference on Robotics and Automation, 2017(1):3433-3438. [32] DOLLAR A M, HOWE R D. The highly adaptive SDM hand:Design and performance evaluation[J]. International Journal of Robotics Research, 2010, 29(5):585-597. [33] RENDA F, GIORELLI M, CALISTI M, et al. Dynamic model of a multibending soft robot arm driven by cables[J]. IEEE Transactions on Robotics, 2014, 30(5):1109-1122. [34] CATALANO M G, GRIOLI G, FARNIOLI E, et al. Adaptive synergies for the design and control of the Pisa/IIT SoftHand[J]. The International Journal of Robotics Research, 2014, 33(5):768-782. [35] ZHANG Hongying, KUMAR A S, FUH J Y H, et al. Topology optimized design, fabrication and evaluation of a multimaterial soft gripper[C]//2018 IEEE International Conference on Soft Robotics, Livorno, Italy, IEEE, 2018:424-430. [36] ZHANG Hongying, KUMAR A S, FUH J Y H, et al. Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1):120-131. [37] DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1-3):161-185. [38] CUI Lei, SUN Jie, DAI J S. In-hand forward and inverse kinematics with rolling contact[J]. Robotica, 2017, 35(12):2381-2399. [39] YUAN Shenli, EPPS A D, NOWAK J B, et al. Design of a roller-based dexterous hand for object grasping and within-hand manipulation[C]//2020 IEEE International Conference on Robotics and Automation, Paris, France, IEEE, 2020:8870-8876. [40] MCCANN C M, DOLLAR A M. Design of a stewart platform-inspired dexterous hand for 6-DOF within-hand manipulation[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, IEEE, 2017:1158-1163. [41] HASEGAWA S, WADA K, NIITANI Y, et al. A three-fingered hand with a suction gripping system for picking various objects in cluttered narrow space[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, IEEE, 2017:1164-1171. [42] GOVINDAN N, KOVVALI S S V, CHANDRASEKARAN K, et al. GraspMan-a novel robotic platform with grasping, manipulation, and multimodal locomotion capability[C]//2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, IEEE, 2018:7354-7359. [43] PEDRO P, ANANDA C, RAFAEL P B, et al. Closed structure soft robotic gripper[C]//2018 IEEE International Conference on Soft Robotics, Livorno, Italy, IEEE, 2018:66-70. [44] 何平, 金明河, 刘宏, 等. 机器人多指灵巧手基关节力矩/位置控制系统的研究[J]. 机器人, 2002, 24(4):314-318. HE Ping, JIN Minghe, LIU Hong, et al. Study of position and torque feedback control system of multi-fingered dexterous robot hand[J]. Robotics, 2002, 24(4):314-318. [45] 尚喜生, 郭卫东, 张浩, 等. BH-4灵巧手抓持规划与实现[C]//"面向新世纪中国机器人产业化发展论坛"大会, 青岛, 2000:196-200. SHANG Xisheng, GUO Weidong, ZHANG Hao, et al. Planning and realization of BH-4 dexterous hand grip[C]//Conference on "China robot industrialization development forum for the new century", Qingdao, 2000:196-200. [46] 王国庆, 张启先, 李大寨, 等. 基于抓持稳定度的多指灵巧手抓持控制[J]. 航空学报, 1997(3):294-298. WANG Guoqing, ZHANG Qixian, LI Dazhai, et al. Grasping control of the dexterous hand based on the degress of stability of grasping[J]. Acta Aeronautica Sinica, 1997(3):294-298. [47] 王志恒, 钱少明, 杨庆华, 等. 气动机器人多指灵巧手——ZJUT Hand[J]. 机器人, 2012, 34(2):223-230. WANG Zhiheng, QIAN Shaoming, YANG Qinghua, et al. Multi fingered dexterous pneumatic robot hand[J]. Robotics, 2012, 34(2):223-230. [48] WANG Zhiheng, ZHANG Libin, BAO Guanjun, et al. Pneumatic robot multi-fingered dexterous hand-ZJUT hand[J]. Journal of Central South University, 2011, 18(4):1105-1114. [49] ZHU Liyao, WANG Wenbiao, TAO Zhicheng, et al. Full-drive decoupled bionic finger:Structure and experimental trials[C]//2019 IEEE International Conference on Robotics and Biomimetics, Dali, China, IEEE, 2019:497-502. [50] LI Shuang, MA Xiaojian, LIANG Hongzhuo, et al. Vision-based teleoperation of shadow dexterous hand using end-to-end deep neural network[C]//2019 International Conference on Robotics and Automation, Montreal, Canada, IEEE, 2019:416-422. [51] ARMSTRONGHELOUVRY B, DUPONT P, DEWIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7):1083-1138. [52] Cerulo I, Ficuciello F, Lippiello V, et al. Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking[J]. Robotics and Autonomous Systems, 2017, 89:75-84. [53] Kim Y, Yoon J, Sim Y. Fluid lubricated dexterous finger mechanism for human-like impact absorbing capability[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3971-3978. [54] KURUMAYA S, NABAE H, ENDO G, et al. Design of thin McKibben muscle and multifilament structure[J]. Sensors and Actuators A-Physical, 2017, 261:66-74. [55] LEE D H, PARK J H, PARK S W, et al. KITECH-Hand:A highly dexterous and modularized robotic hand[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):876-887. [56] VAN DER NIET OTR O, REINDERS-MESSELINK H A, BONGERS R M, et al. The i-LIMB hand and the DMC plus hand compared:A case report[J]. Prosthetics and Orthotics International, 2010, 34(2):216-220. [57] MELCHIORRI C, PALLI G, BERSELLI G, et al. Development of the UB Hand IV:Overview of design solutions and enabling technologies[J]. IEEE Robotics and Automation Magazine, 2013, 20(3):72-81. [58] ZHAO Huichan, O'BRIEN K, LI Shuo, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1):eaai7529. [59] SHE Yu, CHEN Ji, SHI Hongliang, et al. Modeling and validation of a novel bending actuator for soft robotics applications[J]. Soft Robotics, 2016, 3(2):71-81. [60] TERRYN S, BRANCART J, LEFEBER D, et al. Self-healing soft pneumatic robots[J]. Science Robotics, 2017, 2(9):eaan4268. [61] ZHOU Jianshu, CHEN Xiaojiao, LI Jing, et al. A soft robotic approach to robust and dexterous grasping[C]//2018 IEEE International Conference on Soft Robotics, Livorno, Italy, IEEE, 2018:412-417. [62] LIU Yuan, JIANG Li, FAN Shaowei, et al. A novel actuation configuration of robotic hand and the mechanical implementation via postural synergies[C]//2017 IEEE International Conference on Robotics and Automation, Singapore, IEEE, 2017:2215-2222. [63] MARTENS M, BOBLAN I. Modeling the static force of a Festo pneumatic muscle actuator:A new approach and a comparison to existing models[J]. Actuators, 2017, 6(4):33. [64] MA R R, ROJAS N, DOLLAR A M. Spherical hands:Toward underactuated, in-hand manipulation invariant to object size and grasp location[J]. Journal of Mechanisms and Robotics-Transaction of the Same, 2016, 8(6):061021. [65] SCHALER E W, RUFFATTO D I, GLICK P, et al. An electrostatic gripper for flexible objects[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, IEEE, 2017:1172-1179. [66] YUAN Shenli, SHAO Lin, YAKO C L, et al. Design and control of roller grasper V2 for in-hand manipulation[J]. ArXiv, 2020(4):1. [67] KIM Y J, YOON J, SIM Y W. Fluid lubricated dexterous finger mechanism for human-like impact absorbing capability[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3971-3978. [68] FAUDZI A A M, OOGA J, GOTO T, et al. Index finger of a human-like robotic hand using thin soft muscles[J]. IEEE Robotics and Automation Letters, 2018, 3(1):92-99. [69] VANDERBORGHT B, ALBU-SCHAEFFER A, BICCHI A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614. [70] KO T, KAMINAGA H, NAKAMURA Y. Underactuated four-fingered hand with five electro hydrostatic actuators in cluster[C]//2017 IEEE International Conference on Robotics and Automation, Singapore, IEEE, 2017:620-625. [71] PYLATIUK C, SCHULZ S, KARGOV A, et al. Two multiarticulated hydraulic hand prostheses[J]. Artificial Organs, 2004, 28(11):980-986. [72] ZHANG Jun, SHENG Jun, O'NEILL C T, et al. Robotic artificial muscles:Current progress and future perspectives[J]. IEEE Transactions on Robotics, 2019, 35(3):761-781. [73] 鲍官军, 张亚琪, 许宗贵, 等. 软体机器人气压驱动结构研究综述[J]. 高技术通讯, 2019, 29(5):467-479. BAO Guanjun, ZHANG Yaqi, XU Zonggui, et al. Review on pneumatic-driven structure for soft robot[J]. High Tech-communication, 2019, 29(5):467-479. [74] 南卓江, 杨扬, 铃森康一, 等. 基于细径McKibben型气动人工肌肉的仿生手研发[J]. 机器人, 2018, 40(3):321-328. NAN Zhuojiang, YANG Yang, KENICHI S, et al. Development of a bionic hand actuated by thin McKibben pneumatic artificial muscle[J]. Robot, 2018, 40(3):321-328. [75] GU Guoying, ZHU Jian, ZHU Limin, et al. A survey on dielectric elastomer actuators for soft robots[J]. Bioinspiration and Biomimetics, 2017, 12(1):011003. [76] MOHDLSA W, HUNT A, HOSSEINNIA S H. Sensing and self-sensing actuation methods for ionic polymer-metal composite (IPMC):A review[J]. Sensors, 2019, 19(18):3967. [77] KASHEF S R, AMINI S, AKBARZADEH A. Robotic hand:A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria[J]. Mechanism and Machine Theory, 2020, 145:103677. [78] PALLI G, NATALE C, MAY C, et al. Modeling and control of the twisted string actuation system[J]. IEEE-ASME Transactions on Mechatronics, 2013, 18(2):664-673. [79] WU Lianjun, DE ANDRADE M J, SAHARAN L K, et al. Compact and low-cost humanoid hand powered by nylon artificial muscles[J]. Bioinspiration and biomimetics, 2017, 12(2):026004. [80] TANG Xintian, LI Kai, LIU Yingxiang, et al. A general soft robot module driven by twisted and coiled actuators[J]. Smart Materials and Structures, 2019, 28(3):035019. [81] PALLI G, HOSSEINI M, MELCHIORRI C. Twisted string actuation with sliding surfaces[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, IEEE, 2016:260-265. [82] YOUSEF H, BOUKALLEL M, ALTHOEFER K. Tactile sensing for dexterous in-hand manipulation in robotics-A review[J]. Sensors and Actuators A-Physical, 2011, 167(2):171-187. [83] KAPPASSOV Z, CORRALES J A, PERDEREAU V. Tactile sensing in dexterous robot hands-Review[J]. Robotics and Autonomous Systems, 2015, 74:195-220. [84] YANG Junchang, MUN J, KWON S Y, et al. Electronic skin:Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 2019, 31(48):1904765. [85] LI Shuo, BAI Hedan, SHEPHERD R F, et al. Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces[J]. Angewandte Chemie-International Edition, 2019, 58(33):11182-11204. [86] YAMAGUCHI T, KASHIWAGI T, AIRE T, et al. Human-like electronic skin-integrated soft robotic hand[J]. Advanced Intelligent Systems, 2019, 1(2):1900018. [87] LI Tiefeng, LI Guorui, LIANG Yiming, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4):e1602045. [88] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455. [89] MIRVAKILI S M, SIM D, HUNTER I W, et al. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions[J]. Science Robotics, 2020, 5(41):eaaz4239. [90] BERSELLI G, PICCININI M, VASSURA G. Comparative evaluation of the selective compliance in elastic joints for robotic structures[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, IEEE, 2011:4626-4631. [91] GRUBER S. Robot hands and the mechanics of manipulation[J]. IEEE, 1987, 75(8):1134-1134. [92] LIAROKAPIS M, DOLLAR A M. Deriving dexterous, in-hand manipulation primitives for adaptive robot hands[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, IEEE, 2017:1951-1958. [93] 张玉茹, 李继婷, 李剑锋. 机器人灵巧手:建模, 规划与仿真[M]. 北京:机械工业出版社, 2007. ZHANG Yuru, LI Jiting, LI Jianfeng. Robot dexterous hands:Modeling, planning and simulation[M]. Beijing:China Machine Press, 2007. [94] DONG Huixu, ASADI E, QIU Chen, et al. Geometric design optimization of an under-actuated tendon-driven robotic gripper[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50:80-89. [95] NUZZI C, PASINETTI S, LANCINI M, et al. Deep learning-based hand gesture recognition for collaborative robots[J]. IEEE Instrumentation and Measurement Magazine, 2019, 22(2):44-51. [96] CHAO Ya, CHEN Xingchen, XIAO Nanfeng. Deep learning-based grasp-detection method for a five-fingered industrial robot hand[J]. IET Computer Vision, 2019, 13(1):61-70. [97] ANDRYCHOWICZ M, BAKER B, CHOCIEJ M, et al. Learning dexterous in-hand manipulation[J]. The International Journal of Robotics Research, 2020, 39(1):3-20. [98] LI Zhixiong, ZHANG Ziyang, SHI Junchuan, et al. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:488-495. [99] OZAWA R, TAHARA K. Grasp and dexterous manipulation of multi-fingered robotic hands:A review from a control view point[J]. Advanced Robotics, 2017, 31(19-20):1030-1050. [100] SMIT G, PLETTENBURG D H, VAN DER HELM F C T, et al. The lightweight Delft Cylinder Hand:First multi-articulating hand that meets the basic user requirements[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(3):431-440. [101] WU F Y, ASADA H H. "Hold-and-manipulate" with a single hand being assisted by wearable extra fingers[C]//2015 IEEE International Conference on Robotics and Automation, Seattle, Washington, IEEE, 2015:6205-6212. |
[1] | 周素霞, 巴馨悦, 王君艳, 李光, 曲直. 鳞片仿生制动盘散热性能研究[J]. 机械工程学报, 2024, 60(6): 354-362. |
[2] | 周祖意, 杨玉维, 齐文耀, 龚健超, 李照童. 腰部外骨骼机器人多刚-柔体动力学等效逆解方法研究及其性能优化综合[J]. 机械工程学报, 2024, 60(5): 107-118. |
[3] | 王金栋, 吴展扬, 谢宇鸿. 基于牛牙几何特征的仿生研磨副结构协同设计[J]. 机械工程学报, 2024, 60(19): 212-224. |
[4] | 黄家乐, 李萍, 邓亮明, 陈志鹏, 周伟, 向建化. 基于不对称流动阻力的热二极管设计及传热性能研究[J]. 机械工程学报, 2024, 60(18): 208-217. |
[5] | 田波, 娄军强, 沈家旭, 柳丽, 陈特欢, 李国平, 魏燕定. 可用于微创手术的毫米级微小并联机器人的设计、制造及实现[J]. 机械工程学报, 2024, 60(17): 147-155. |
[6] | 王敏, 孙景健, 丁基恒, 孙翊, 彭艳, 蒲华燕, 罗均, 谢少荣. 基于D-H参数与拉格朗日联立方程的仿生水蛇机器人运动学分析及动力学建模[J]. 机械工程学报, 2024, 60(15): 134-148. |
[7] | 孙雨欣, 蔡守宇, 张旭, 王珂. 基于自适应特征驱动法的散热结构拓扑优化设计[J]. 机械工程学报, 2024, 60(15): 346-357. |
[8] | 钟思平, 辛梓百, 李奕宏, 徐文福, 潘尔振. 基于操控技能映射的扑翼机器人自主飞行控制[J]. 机械工程学报, 2024, 60(11): 205-215. |
[9] | 陈亮, 张活, 刘晓敏, 林章敏. 基于EQA和AD的产品仿生创新设计方法[J]. 机械工程学报, 2024, 60(1): 329-342. |
[10] | 李永辉, 卢文秀. 大型游乐设施多姿态假人下肢省力驱动设计研究[J]. 机械工程学报, 2024, 60(1): 352-360. |
[11] | 许毅, 张雨来, 斯云昊, 李昌, 黄强, 石青. 微小型仿蝗虫机器人设计及其无翻转跳跃运动实现[J]. 机械工程学报, 2023, 59(9): 1-11. |
[12] | 李照童, 杨玉维, 李彬, 赵磊, 刘凉, 马跃, 刘祺. 一种新型仿生变胞膝关节外骨骼机器人及其多体运动尺度综合方法研究[J]. 机械工程学报, 2023, 59(5): 142-155. |
[13] | 闫征, 王立新, 董世运, 闫世兴. 微小型飞行昆虫降落/起飞过程微牛级接触力测试系统设计[J]. 机械工程学报, 2023, 59(5): 280-290. |
[14] | 周剑飞, 郭子琦, 许述财, 宋家锋, 邹猛. 生物轻质高强结构及其在吸能结构中的仿生应用[J]. 机械工程学报, 2023, 59(4): 80-95. |
[15] | 汪朝晖, 熊肖, 高全杰, 范益伟. 基于仿蜘蛛网流道结构设计的圆柱形锂电池热管理系统性能研究[J]. 机械工程学报, 2023, 59(22): 150-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||