[1] ELBER W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1):37-45. [2] ELBER W. The significance of fatigue crack closure[J]. Damage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials, 1971:230-242. [3] SCHIJVE J, BROEK D. Crack propagation:the results of a test programme based on a gust spectrum with variable amplitude loading[J]. Aircraft Engineering and Aerospace Technology, 1962, 34(11):314-316. [4] BATHIAS C, VANCON M. Mechanisms of overload effect on fatigue crack propagation in aluminium alloys[J]. Engineering Fracture Mechanics, 1978, 10(2):409-424. [5] TOPPER T H, YU M T. The effect of overloads on threshold and crack closure[J]. International Journal of Fatigue, 1985, 7(3):159-164. [6] VARDAR Ö. Effect of single overload in FCP[J]. Engineering Fracture Mechanics, 1988, 30(3):329-335. [7] TOKAJI K, ANDO Z, KOJIMA T. Fatigue crack retardation of low carbon steel in saltwater[J]. Journal Engineering Materials and Technology (United States), 1984, 106, 1(1):38-42. [8] SHIN C S, FLECK N A. Fatigue and fracture of a zinc die casting alloy[J]. International Journal of Fatigue, 1989, 11(5):341-346. [9] 李年, 杜百平, 王章忠. 近门坎区Ⅰ, Ⅱ, Ⅲ型过载对Ⅰ型疲劳裂纹扩展延滞的影响-2.延滞机制[J]. 机械强度, 1997, 19(2):47-50. LI Nian, DU Baiping, WANG Zhangzhong. Influence of mode I, II and III overloading on the fatigue crack propagation of mode I in the near fatigue threshold region (2)[J]. Journal of Mechanical Strength, 1997, 19(2):47-50. [10] MCEVILY A J, ISHIHARA S. On the retardation in fatigue crack growth rate due to an overload:A review[J]. SAE Brasil-International Congress on Fatigue, 2001, 1(4050):145-150. [11] 雷贝贝. 拉伸超载作用下铝合金疲劳裂纹扩展特性及断裂机理研究[D]. 西安:长安大学, 2018. LEI Beibei. Study on fatigue crack growth behavior and fracture mechanism of Al-alloy subjected to tensile overloads[D]. Xi'an:Chang'an University, 2018. [12] LU Y C, YANG F P, CHEN T. Effect of single overload on fatigue crack growth in QSTE340TM steel and retardation model modification[J]. Engineering Fracture Mechanics, 2019, 212:81-94. [13] CHEN R, ZHU M L, XUAN F Z, et al. Near-tip strain evolution and crack closure of growing fatigue crack under a single tensile overload[J]. International Journal of Fatigue, 2020, 134:1-10. [14] NOWELL D, MATOS P F P D. Application of digital image correlation to the investigation of crack closure following overloads[J]. Procedia Engineering, 2010, 2(1):1035-1043. [15] NOWELL D, PAYNTER R J H, MATOS P F P D. Optical methods for measurement of fatigue crack closure:moiré interferometry and digital image correlation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(12):778-790. [16] CHEN C Y, YE D Y, ZHANG L, et al Effects of tensile/compressive overloads on fatigue crack growth behavior of an extra-low-interstitial titanium alloy[J]. International Journal of Mechanical Sciences, 2016, 118:55-66. [17] CHEN C Y, YE D Y, ZHANG L, et al. DIC-based studies of the overloading effects on the fatigue crack propagation behavior of Ti-6Al-4V ELI alloy[J]. International Journal of Fatigue, 2018, 112:153-164. [18] LOPEZ-CRESPO P, MOSTAFAVI M, STEUWER A, et al. Characterisation of overloads in fatigue by 2D strain mapping at the surface and in the bulk[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(8):1040-1048. [19] 李晓宇. 单个拉伸过载情况下金属材料疲劳裂纹扩展行为的研究[D]. 合肥:合肥工业大学, 2015. LI Xiaoyu. Research on fatigue crack propagation behavior under a single tensile overload[D]. Hefei:Hefei University of Technology, 2015. [20] 丁振宇, 高增梁, 王效贵. 16MnR钢过载峰作用下的疲劳裂纹扩展行为研究[J]. 机械工程学报, 2013, 49(16):84-90. DING Zhenyu, GAO Zengliang, WANG Xiaogui. Study on crack growth behavior of 16MnR subjected to single tensile overload[J]. Journal of Mechanical Engineering, 2013, 49(16):84-90. [21] 韩瑾, 杨平, 董琴. 过载对于疲劳裂纹闭合效应的研究[J]. 武汉理工大学学报, 2017, 41(5):854-858. HAN Jin, YANG Ping, DONG Qin. Research of overload on fatigue crack closure effect[J]. Journal of Wuhan University of Technology, 2017, 41(5):854-858. [22] BAPTISTA J B, ANTUNES F V, CORREIA L, et al. A numerical study of the effect of single overloads on plasticity induced crack closure[J]. Theoretical and Applied Fracture Mechanics, 2017, 88:51-63. [23] WILLIAMS M L. On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1957, 24(1):109-114. [24] 范天佑. 断裂力学基础[M]. 北京:科学出版社, 2003. FAN Tianyou. Fundamentals of fracture mechanics[M]. Beijing:Science Press, 2003. [25] VASCO-OLMO J M, JAMES M N, CHRISTOPHER C J, et al. Assessment of crack tip plastic zone size and shape and its influence on crack tip shielding[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(8):969-981. [26] 张蕊, 贺玲凤. 数字图像相关法测量聚碳酸酯板应力强度因子[J]. 工程力学, 2012, 29(12):22-27. ZHANG Rui, HE Lingfeng. Evaluating stress intensity factor of polycarbonate using digital image correlation[J]. Engineering Mechanics, 2012, 29(12):22-27. [27] 杨冰, JAMES M N. 基于CJP模型的疲劳裂纹扩展率曲线及应用方法[J]. 机械工程学报, 2018, 54(18):76-84. YANG Bing, JAMES M N. Fatigue crack growth rate on the CJP model and its application method[J]. Journal of Mechanical Engineering, 2018, 54(18):76-84. [28] VASCO-OLMO J M, DÍAZ F A, ANTUNES F V, et al. Plastic CTOD as fatigue crack growth characterising parameter in 2024-T3 and 7050-T6 aluminium alloys using DIC[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(8):1-12. [29] 王德人. 非线性方程组解法与最优化方法[M]. 北京:人民出版社, 1979. WANG Deren. Solutions and optimization methods of nonlinear equations[M]. Beijing:People's Publishing House, 1979. [30] 董耀锋. C35钢疲劳裂纹张开力的确定方法研究[D]. 上海:上海交通大学, 2014. DONG Yaofeng. Research on methods for fatigue crack opening load determination in C35 steel[D]. Shanghai:Shanghai Jiao Tong University, 2014. [31] KUJAWSKI D, STOYCHEV S. Parametric study on the variability of opening load determination[J]. International Journal of Fatigue, 2003, 25(9-11):1181-1187. [32] 肖赢. 裂纹过载迟滞机理与实验研究[D]. 长沙:湖南大学, 2019. XIAO Ying. Mechanism and experimental study of crack overload retardation[D]. Changsha:Hunan University, 2019. |