[1] 沈惠平,赵海彬,邓嘉鸣,等. 基于自由度分配和方位特征集的混联机器人机型设计方法及应用[J]. 机械工程学报, 2011, 47(23):56-64. SHEN Huiping, ZHAO Haibin, DENG Jiaming, at al. Type design method and the application for hybrid robot based on freedom distribution and position and orientation characteristic set[J]. Journal of Mechanical Engineering, 2011, 47(23):56-64. [2] SALOMON O, WOLF A. Inclined links hyper-redundant elephant trunk-like robot[J]. Journal of Mechanisms and Robotics, 2012, 4(4):045001. [3] LU Y, DAI Z, YE N. Dynamics analysis of novel hybrid robotic arm with three fingers[J]. Robotica, 2016, 34(12):2759-2775. [4] 刘辛军,谢福贵,汪劲松. 当前中国机构学面临的机遇[J]. 机械工程学报, 2015, 51(13):2-12. LIU Xinjun, XIE Fugui, WANG Jinsong. Current opportunities in the field of mechanisms in China[J]. Journal of Mechanical Engineering, 2015, 51(13):2-12. [5] DASGUPTA B,MRUTHYUNJAYA T S. Force redundancy in parallel manipulators:Theoretical and practical issues[J]. Mechanism and Machine Theory, 1998, 33(6):727-742. [6] YI B J, OH S R, SUH I H. A five-bar finger mechanism involving redundant actuators:Analysis and its applications[J]. IEEE Transactions on Robotics and Automation, 1999, 15(6):1001-1010. [7] CHAKAROV D. Study of the antagonistic stiffness of parallel manipulators with actuation redundancy[J]. Mechanism and Machine Theory, 2004, 39(6):583-601. [8] 黄真,赵永生,赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006. HUANG Zhen, ZHAO Yongsheng, ZHAO Tieshi. Advanced spatial mechanism[M]. Beijing:Higher Education Press, 2006. [9] JIN M H, ZHOU C, LIU Y C, et al. Analysis of reaction torque-based control of a redundant free-floating space robot[J]. Chinese Journal of Aeronautics, 2017, 30(5):1765-1776. [10] CHUNG C Y, LEE G H, KIM M S. Torque optimizing control with singularity-robustness for kinematically redundant robots[J]. Journal of Intelligent and Robotic Systems, 2000, 28(3):231-258. [11] 刘晓飞,姚建涛,赵永生. 冗余驱动并联机构的驱动力同步协调控制[J]. 计算机集成制造系统, 2018, 24(9):2140-2149. LIU Xiaofei, YAO Jiantao, ZHAO Yongsheng. Driving force synchronous control of redundantly actuated parallel mainpulator[J]. Computer Integrated Manufacturing Systems, 2018, 24(9):2140-2149. [12] 窦玉超,姚建涛,高思慧,等. 冗余驱动并联机器人动力学建模与驱动力协调分配[J]. 农业机械学报, 2014, 45(1):293-300. DOU Yuchao, YAO Jiantao, GAO Sihui, et al. Dynamic modeling and drive force coordination of redundantly driven parallel robots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1):293-300. [13] 李研彪,王林,罗怡沁,等. 球面5R并联机构的动力学建模及动载分配优化[J]. 光学精密工程, 2018, 26(8):2012-2020. LI Yanbiao, WANG Lin, LUO Yiqin, et al. Dynamic modeling and dynamic load distribution optimization of a sperical 5R parallel mechanism[J]. Optics and Precision Engineering, 2018, 26(8):2012-2020. [14] 刘善增. 少自由度并联机器人机构动力学[M]. 北京:科学出版社, 2015. LIU Shanzeng. Dynamics of lower-mobility parallel manipulators[M]. Beijing:Science Press, 2015. [15] 张亮. 仿人机器人肩肘腕关节及臂的设计[D]. 秦皇岛:燕山大学, 2016. ZHANG Liang. Design for shoulder elbow wrist Joint and arm of humanoid robot[D]. Qinhuangdao:Yanshan University, 2016. [16] 周玉林, 刘磊, 高峰, 等. 3自由度球面并联机构3-RRR静力全解[J]. 机械工程学报, 2008, 44(6):169-176. ZHOU Yulin, LIU Lei, GAO Feng, et al. Static fullsolutions of spherical parallel mechanism 3-RRR with 3-DOF[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6):169-176. [17] 李永泉,宋肇经,郭菲,等. 多能域过约束并联机器人系统动力学建模方法[J]. 机械工程学报, 2016, 52(21):17-25. LI Yongquan, SONG Zhaojing, GUO Fei, et al. Dynamic modeling method for overconstrained multi-energy domain parallel manipulator[J]. Journal of Mechanical Engineering, 2016, 52(21):17-25. [18] 曾达幸,王娟娟,樊明洲,等. 基于主成分分析方法的并联机构参数优化[J]. 中国机械工程, 2017, 28(24):2899-2905. ZHENG Daxing, WANG Juanjuan, FAN Mingzhou, et al. Parameter optimization of parallel mechanisms based on PCA[J]. China Mechanical Engineering, 2017, 28(24):2899-2905. [19] 张军锋,史耀耀,蔺小军,等. 基于灰色关联分析的叶片砂带抛光参数优化[J]. 计算机集成制造系统, 2017, 23(4):806-814. ZHANG Junfeng, SHI Yaoyao, LIN Xiaojun, et al. Parameters optimization in belt polishing process of based on grey relational analysis[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):806-814. [20] 赵京,李立明,尚红,等. 基于主成分分析法的机械臂运动灵活性性能综合评价[J]. 机械工程学报, 2014, 50(13):9-15. ZHAO Jing, LI Liming, SHANG Hong, et al. Comprehensive evaluation of robotic kinematic dexterity performance based on principal component analysis[J]. Journal of Mechanical Engineering, 2014, 50(13):9-15. |