• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (2): 192-200.doi: 10.3901/JME.2020.02.192

• 交叉与前沿 • 上一篇    下一篇

扫码分享

湍流工况小型风力机翼型气动特性及稳健优化

唐新姿, 李鹏程, 彭锐涛, 陆鑫宇   

  1. 湘潭大学机械工程学院 湘潭 411105
  • 收稿日期:2018-12-15 修回日期:2019-06-19 出版日期:2020-01-20 发布日期:2020-03-11
  • 通讯作者: 彭锐涛(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为气动设计及多学科优化、高效精密加工与传动。E-mail:pengruitao@163.com
  • 作者简介:唐新姿,女,1981年出生,博士,副教授,硕士研究生导师。主要研究方向为风力发电技术。E-mail:xinzitang@163.com;李鹏程,男,1993年出生。主要研究方向为风力发电技术。E-mail:lipengchengtt@163.com
  • 基金资助:
    国家自然科学基金(51305377,51975504)、湖南省自然科学基金(2018JJ4082)、湖南省教育厅重点(18A077)和教育部留学回国人员科研启动基金(教外司留[2015]1098号)资助项目。

Aerodynamic Characteristics and Robust Optimization of Small Wind Turbine Airfoil under Turbulence Condition

TANG Xinzi, LI Pengcheng, PENG Ruitao, LU Xinyu   

  1. School of Mechanical Engineering, Xiangtan University, Xiangtan 411105
  • Received:2018-12-15 Revised:2019-06-19 Online:2020-01-20 Published:2020-03-11

摘要: 风力机翼型设计通常未考虑湍流强度影响,气动设计与实际工况产生较大偏差,为使得翼型设计与实际工况相匹配,考虑随机湍流工况湍流强度大小的不确定性,以S809翼型为研究对象,分析低雷诺数下不同湍流强度对翼型S809升阻气动特性、压力分布影响规律,量化湍流不确定性对翼型气动性能的影响,提出一种在气动优化中耦合层流分离预测的高湍流低雷诺数小型风力机翼型优化策略,基于非嵌入式概率配置点法、Transition SST模型、拉丁超立方试验设计、Kriging模型和非支配排序遗传算法进行气动稳健优化设计。案例结果表明,优化后翼型湍流适应性增强,在不确定湍流强度TI~N(0.15,0.037 52)工况下最大升阻比平均值提升了6.55%,标准差减小了13.49%。该方法使翼型设计与湍流风况相匹配,降低翼型对不确定湍流的敏感性,为不确定湍流工况低雷诺数翼型及小型风力机设计与应用提供重要参考。

关键词: 风力机翼型, 低雷诺数, 随机湍流, 稳健性优化

Abstract: The influence of turbulence intensity is generally not considered in the design of wind turbine airfoil, which leads to a large deviation between the aerodynamic design and the actual working condition. In order to match the airfoil design with the actual working condition, considering the uncertainty of turbulence intensity at stochastic turbulent condition, taking airfoil S809 as the research object, the influence of different turbulence intensity on the aerodynamic characteristics and pressure distribution of the airfoil S809 is analyzed, and the influence of turbulent uncertainty on the aerodynamic performance of the airfoil is quantified. An aerodynamic optimization strategy coupled with boundary layer transition prediction was proposed for high turbulence and low Reynolds number wind turbine airfoil. Based on non-intrusive probabilistic collocation method, the Transition SST model, the Latin hypercube sampling, the Kriging model and the genetic algorithm, the multi-objective optimization of airfoil was carried out. The results show that:After optimization, the airfoil turbulence adaptability is enhanced, the average lift-to-drag ratio is improved by 6.55%, and the standard deviation is reduced by 13.49% under turbulence condition TI~N(0.15,0.037 52). The proposed method matches the airfoil design with turbulence, reducing the sensitivity of airfoil to turbulence uncertainty, which provides an important reference for the design and application of low Reynolds number airfoil and small wind turbines under stochastic turbulence conditions.

Key words: wind turbine airfoil, low Reynolds number, stochastic turbulence, robust design

中图分类号: