• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (13): 103-109.doi: 10.3901/JME.2020.13.103

• 机构学与机器人 • 上一篇    下一篇

扫码分享

小型球形水底观测机器人设计分析与实现

李艳生1, 孙汉旭2   

  1. 1. 重庆邮电大学先进制造工程学院 重庆 400065;
    2. 北京邮电大学自动化学院 北京 100876
  • 收稿日期:2019-09-02 修回日期:2020-03-07 出版日期:2020-07-05 发布日期:2020-08-01
  • 通讯作者: 李艳生(通信作者),男,1983年出生,博士,副教授。主要研究方向为特种机器人、移动机器人。E-mail:liyansheng@cqupt.edu.cn
  • 作者简介:孙汉旭,男,1960年出生,博士,教授,博士研究生导师。主要研究方向为特种机器人、空间机械臂。E-mail:hxsun@bupt.edu.cn
  • 基金资助:
    国家自然科学基金(61803058,51175048)和重庆市自然科学基金(cstc2018jcyjAX0385)资助项目。

Design and Development of Small Spherical Underwater Observation Robot

LI Yansheng1, SUN Hanxu2   

  1. 1. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065;
    2. School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876
  • Received:2019-09-02 Revised:2020-03-07 Online:2020-07-05 Published:2020-08-01

摘要: 面向水底信息获取和环境观测需求,基于球状壳体抵抗水压能力强,转动水阻力小,便于姿态控制特点,提出球形水底观测机器人构型,由螺旋桨推进、姿态调节和复合滚动装置组成欠驱动六自由度水下移动平台,球壳作为密闭舱保护内部电子器件,结合重摆以滚动形式实现水底滚动。通过对机器人流体力学仿真计算出水动力系数并建立水下动力学方程,进一步对机器人的螺旋桨推进、飞轮转向和球壳滚动进行分析,得出球壳优化尺寸以及飞轮匹配惯量和球壳滚动特性。基于球形机器人水下移动平台和地面监控软件的水底观测系统架构,研制出球形水底观测机器人原理样机,结合机器人的构型和运动特点制定出降落、滚动和调姿三段式水底运动观测策略,水池试验表明设计的球形水底观测机器人水中推进速度可达到1.4 m/s,水底移动速度可达到0.5 m/s,姿态调节速度可达到30°/s,能够实现水底图像采集,辅助岸上科研人员执行水底观测任务。

关键词: 水下机器人, 球形机器人, 运动特性, 水底观测, 图像采集

Abstract: According to the demand of underwater information acquisition and environmental observation, a spherical underwater robot is proposed based on compression, rotational resistance and attitude control. A propeller, attitude adjusting and composite rolling device form an under-actuated and six-degree-of-freedom underwater mobile platform. Spherical shell can protect the internal electronics and achieve underwater rolling with heavy pendulums. The hydrodynamic coefficients are obtained by simulating and calculating, and the dynamic equation is established. Furthermore, propulsion, steering and rolling are analyzed, and optimal dimensions, flywheel inertia and rolling characteristics are obtained. The system architecture is integrated based on the robot and software interface, and the robot prototype is developed. According to the robot characteristics, a three-stage observation strategy of landing, rolling and posture adjustment is developed. The pool experiment shows that the designed spherical robot can reach a propulsion speed of 1.4 m/s, a rolling speed of 0.5 m/s, and an attitude adjusting speed of 30°/s. The image was taken at the bottom of the water, which can assist researchers to perform underwater observation tasks.

Key words: underwater robot, spherical robot, motion characteristics, underwater observation, image acquisition

中图分类号: