[1] 刘献礼,刘强,岳彩旭,等. 切削过程中的智能技术[J]. 机械工程学报,2018,54(16):45-61. LIU Xianli,LIU Qiang,YUE Caixu,et al. Intelligent technology in cutting process[J]. Journal of Mechanical Engineering,2018,54(16):45-61. [2] CHEN Wanqun,SUN Yazhou,HUO Dehong,et al. Modelling of the influence of tool runout on surface generation in micro milling[J]. Chinese Journal of Mechanical Engineering,2019,32(1):152-160. [3] YEGANEFAR A,NIKNAM S A,ASADI R. The use of support vector machine,neural network,and regression analysis to predict and optimize surface roughness and cutting forces in milling[J]. The International Journal of Advanced Manufacturing Technology,2019,105(1-4):951-965. [4] 阴艳超,丁卫刚. 切削加工表面粗糙度的多维多规则云预测方法[J]. 机械工程学报,2016,52(15):204-212. YIN Yanchao,DING Weigang. Multi-dimensional and multi-rule cloud prediction method for cutting surface roughness[J]. Journal of Mechanical Engineering,2016,52(15):204-212. [5] HUANG P B,SHIANG W J,JOU Y T,et al. An in-process adaptive control of surface roughness in end milling operations[C]//International Conference on Machine Learning & Cybernetics,July 11-14,2010,Qingdao,China. IEEE,2010:2160-1348. [6] PIMENOV D Y,BUSTILLO A,MIKOLAJCZYK T. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth[J]. Journal of Intelligent Manufacturing,2018,29:1045-1061. [7] ZHAO Guoyong,GUO Y B,ZHU Peiyu,et al. Energy consumption characteristics and influence on surface quality in milling[J]. Procedia CIRP,2018,71:111-115. [8] 张洁,刘成颖,郑烽,等. 基于铣削动力学的刀具强迫振动抑制研究[J]. 机械工程学报,2018,54(17):94-99. ZHANG Jie,LIU Chengying,ZHENG Feng,et al. Research on tool vibration suppression based on milling dynamics[J]. Journal of Mechanical Engineering,2018,54(17):94-99. [9] LIU Lijia,LIU Xianli,MAN Chuntao,et al. Delayed observer-based H∞ control for networked control systems[J]. Neurocomputing,2016,179:101-109. [10] 李茂月,韩振宇,富宏亚,等. 基于开放式控制器的铣削颤振在线抑制[J]. 机械工程学报,2012,48(17):172-182. LI Maoyue,HAN Zhenyu,FU Hongya,et al. On-line suppression of milling chatter based on open controller[J]. Journal of Mechanical Engineering,2012,48(17):172-182. [11] LIU Xianli,DING Yunpeng,YUE Caixu,et al. Off-line feedrate optimization with multiple constraints for corner milling of a cavity[J]. The International Journal of Advanced Manufacturing Technology,2016,82(9-12):1899-1907. [12] 刘献礼,丁云鹏,岳彩旭,等. 基于载荷控制的拐角铣削进给优化[J]. 机械工程学报,2016,52(19):189-196. LIU Xianli,DING Yunpeng,YUE Caixu,et al. Feed optimization of corner milling based on load control[J]. Journal of Mechanical Engineering,2016,52(19):189-196. [13] YAO Xifan,ZHANG Yi,LI Bin,et al. Machining force control with intelligent compensation[J]. International Journal of Advanced Manufacturing Technology,2013,69(5-8):1701-1715. [14] LIAO Xiaoping,ZHOU Gang,ZHANG Zhenkun,et al. Tool wear state recognition based on GWO-SVM with feature selection of genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2019,104(1-4):1051-1063. [15] BABATUNDE O H,ARMSTRONG L,LENG J,et al. A genetic algorithm-based feature selection[J]. International Journal of Electronics Communication and Computer Engineering,2014,5(4):889-905. [16] BABATUNDE O H,ARMSTRONG L,LENG J,et al. Zernike moments and genetic algorithm:Tutorial and application[J]. British Journal of Mathematics & Computer Science,2014,4(15):2217-2236. [17] SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks,1991,2(6):568-576. |