[1] RAMIREZ-MARQUEZ J E, COIT D W. Composite importance measures for multi-state systems with multi-state components[J]. IEEE Transactions on Reliability, 2005, 54(3):517-529. [2] ZIO E, PODOFILLINI L. Monte-Carlo simulation analysis of the effects on different system performance levels on the importance on multi-state components[J]. Reliability Engineering and System Safety, 2003, 82(1):63-73. [3] 姚成玉, 吕军, 陈东宁, 等. 凸模型T-S故障树及重要度分析方法[J]. 机械工程学报, 2015, 51(24):184-192. YAO Chengyu, LÜ Jun, CHEN Dongning, et al. Convex model T-S fault tree and importance analysis methods[J]. Journal of Mechanical Engineering, 2015, 51(24):184-192. [4] 韩烨. 基于FTA的数控冲床重要度分析[D]. 吉林:吉林大学, 2008. HAN Ye. FTA-based importance analysis of numerical control puncher[D]. Jilin:Jilin University, 2008. [5] BIRNBAUM Z W. On the importance of different component in a multi-component system[M]. New York:Academic Press, 1969. [6] BARLOW R E, PROSCHAN F. Importance of system components and failure tree events[J]. Stochastic Processes and Their Applications, 1975, 3(2):153-173. [7] LAMBERT H E. Fault trees for decision making in systems analysis[D]. Livemore:University of California, 1975. [8] 孟书, 申桂香, 陈炳焜, 等. 基于灰关联的加工中心可用性需求重要度研究[J]. 机械工程学报, 2016, 52(24):187-193. MENG Shu, SHEN Guixiang, CHEN Bingkun, et al. Analysis on requirement importance rating for availability of machining center based on grey relation method[J]. Journal of Mechanical Engineering, 2016, 52(24):187-193. [9] NATVIG B. Multistate systems reliability theory with applications[M]. Norway:Wiley, 2011. [10] 米金华. 认知不确定性下复杂系统的可靠性分析与评估[D]. 成都:电子科技大学, 2016. MI Jinhua. Reliability analysis and assessment of complex system under epistemic uncertainty[D]. Chengdu:University of Electronic Science and Technology of China, 2016. [11] 刘宇. 多状态复杂系统可靠性建模及维修决策[D]. 成都:电子科技大学, 2010. LIU Yu. Multi-state complex system reliability modeling and maintenance decision[D]. Chengdu:University of Electronic Science and Technology of China, 2010. [12] 钱文学, 尹晓伟, 谢里阳. 基于贝叶斯网络的多状态系统可靠性建模与评估[J]. 机械工程学报, 2009, 45(2):206-212. QIAN Wenxue, YIN Xiaowei, XIE Liyang. Multi-state system reliability modeling and assessment based on Bayesian networks[J]. Journal of Mechanical Engineering, 2009, 45(2):206-212. [13] 段建国, 李爱平, 谢楠, 等. 可重构制造系统多状态可靠性建模与分析[J]. 机械工程学报, 2011, 47(17):104-111. DUAN Jianguo, LI Aiping, XIE Nan, et al. Multi-state reliability modeling and analysis of reconfigurable manufacturing systems[J]. Journal of Mechanical Engineering, 2011, 47(17):104-111. [14] LIU Y, LIN P, LI Y F, et al. Bayesian reliability and performance assessment for multi-state systems[J]. IEEE Transactions on Reliability, 2015, 64(1):394-409. [15] GRIFFITH W S. Multi-state reliability models[J]. Journal of Applied Probability, 1980, 17(3):735-744. [16] LEVITIN G, LISNIANSKI A. Importance and sensitivity analysis of multi-state systems using universal generating function[J]. Reliability Engineering and System Safety, 1999, 65(3):271-282. [17] SI S, DUI H, ZHANG S G, et al. The integrated importance measure of multi-state coherent systems for maintenance processes[J]. IEEE Transactions on Reliability, 2012, 61(2):266-273. [18] SI S, DUI H, SUN S D. Component importance for multi-state system lifetimes with renewal functions[J]. IEEE Transactions on Reliability, 2014, 63(1):105-117. [19] 姜潮, 张旺, 韩旭. 基于Copula函数的证据理论相关性分析模型及结构可靠性计算方法[J]. 机械工程学报, 2017, 53(16):199-209. JIANG Chao, ZHANG Wang, HAN Xu. A copula function based evidence theory model for correlation analysis and corresponding structural reliability method[J]. Journal of Mechanical Engineering, 2017, 53(16):199-209. [20] MULA J, POLER R, GARCIA-SABATER J P. Material requirement planning with fuzzy constraints and fuzzy coefficients[J]. Fuzzy Sets and Systems, 2007, 158(7):783-793. [21] SANKARARAMAN S, MAHADEVAN S. Likelihoodbased representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering and System Safety, 2011, 96(7):814-824. [22] TONON F. Using random set theory to propagate epistemic uncertainty through a mechanical system[J]. Reliability Engineering and System Safety, 2004, 85(1):249-266. [23] FERSON S, KREINOVICH V, GINZBURG L, et al. Constructing probability boxes and Dempster-Shafer structures[R]. Albuquerque, NM:Sandia National Laboratories, 2003. [24] DESTERCKE S, SALLAK M. An extension of universal generating function in multi-state systems considering epistemic uncertainties[J]. IEEE Transactions on Reliability, 2013, 62(2):504-514. [25] DENOEUX T. Reasoning with imprecise belief structures[J]. International Journal of Approximate Reasoning, 1999, 20(1):79-111. [26] ICHIHASHI H, TANAKA H. Jeffrey-like rules of conditioning for the Dempster-Shafer theory of evidence[J]. International Journal of Approximate Reasoning, 1989, 3(2):143-156. [27] XU H, SMETS P. Reasoning in evidential networks with conditional belief functions[J]. International Journal of Approximate Reasoning, 1996, 14(2):155-185. [28] SMETS P. Belief functions:The disjunctive rule of combination and the generalized Bayesian theorem[J]. International Journal of Approximate Reasoning, 1993, 9(1):1-35. [29] JIANG C, HAN X, LIU G R, et al. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008, 188(1):1-13. [30] 李新兰, 姜潮, 韩旭. 基于区间的不确定多目标优化方法及应用[J]. 中国机械工程, 2011, 22(9):1100-1106. LI Xinlan, JIANG Chao, HAN Xu. An uncertainty multi-objective optimization based on interval analysis and its application[J]. China Mechanical Engineering, 2011, 22(9):1100-1106. |