[1] 程光仁. 滚珠螺旋传动设计基础[M]. 北京:机械工业出版社, 1987. CHENG Guangren. Basis design of ball screw transmission[M]. Beijing:China Machine Press,1987. [2] GUO Q, YE L, WANG Y, et al. Comparative assessment of surface roughness and microstructure produced in whirlwind milling of bearing steel[J]. Machining Science & Technology, 2014, 18(18):251-276. [3] FENG H T, WANG Y L, LI C M, et al. An automatic measuring method and system using a light curtain for the thread profile of a ballscrew[J]. Measurement Science & Technology, 2011, 22(8):85106-85114. [4] LEE M H, KANG D B, SON S M, et al. Investigation of cutting characteristics for worm machining on automatic lathe - Comparison of planetary milling and side milling[J]. Journal of Mechanical Science & Technology, 2008, 22(12):2454-2463. [5] MOHAN L V, SHUNMUGAM M S. Simulation of whirling process and tool profiling for machining of worms[J]. Journal of Materials Processing Technology, 2007, 185(1):191-197. [6] LI Y F, SONG J B, SONG X C, et al. Temperature field simulation of ball screw whirlwind milling[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012, 591-593:588-592. [7] LI Y F, SONG X C, JIANG H K, et al. Study on thermal elongation error of whirlwind hard milling ballscrew[J]. Key Engineering Materials, 2013, 589-590:221-226. [8] WANG Y, LI L, ZHOU C, et al. The dynamic modeling and bibration analysis of the large-scale thread whirling system under high-speed hard cutting[J]. Machining Science & Technology, 2014, 18(4):522-546. [9] SHI J, LIU C R, SHI J, et al. Decomposition of thermal and mechanical effects on microstructure and hardness of hard turned surfaces[J]. Journal of Manufacturing Science & Engineering, 2004, 126(2):264-273. [10] KOMANDURI R, HOU Z B. Thermal modeling of the metal cutting process - Part Ⅲ:Temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source[J]. International Journal of Mechanical Sciences, 2001, 43(1):89-107. [11] ARTOZOUL J, LESCALIER C, DUDZINSKI D. Experimental and analytical combined thermal approach for local tribological understanding in metal cutting[J]. Applied Thermal Engineering, 2015, 89:394-404. [12] HUANG K, YANG W. Analytical model of temperature field in workpiece machined surface layer in orthogonal cutting[J]. Journal of Materials Processing Tech, 2016, 229:375-389. [13] STEPHENSON D A, ALI A. Tool temperatures in interrupted metal cutting[J]. Journal of Manufacturing Science & Engineering, 1992, 114(2):127-136. [14] LAZOGLU I, BUGDAYCI B. Thermal modelling of end milling[J]. CIRP Annals - Manufacturing Technology, 2014, 63(1):113-116. [15] KUO H Y, MEYER K, LINDLE R, et al. Estimation of milling tool temperature considering coolant and wear[J]. Journal of Manufacturing Science & Engineering, 2011, 134(3):233-242. [16] LIN S, PENG F, WEN J, et al. An investigation of workpiece temperature variation in end milling considering flank rubbing effect[J]. International Journal of Machine Tools & Manufacture, 2013, 73(7):71-86. [17] ABUKHSHIM N A, MATIVENGA P T, SHEIKH M A. Investigation of heat partition in high speed turning of high strength alloy steel[J]. International Journal of Machine Tools & Manufacture, 2005, 45(15):1687-1695. [18] DAVIDSON S R, JAMES D F. Drilling in bone:Modeling heat generation and temperature distribution.[J]. Journal of Biomechanical Engineering, 2003, 125(3):305-14. [19] 付宝萍, 田茂林. 旋风硬铣削在滚珠丝杠加工中的应用[J]. 新技术新工艺, 2010(3):25-26. FU Baoping, TIAN Maolin. Application of whirlwind milling process on the ball screw manufacture[J]. New Technology & New Process, 2010(3):25-26. [20] CHAO B T, TRIGGER K J. The signficance of thermal number in metal machining[J]. Transactions of ASME 1953, 75:109-20. [21] GRZESIK W. Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique[J]. International Journal of Machine Tools & Manufacture, 2006, 46(6):651-658. [22] KOMANDURI R, HOU Z B. Thermal modeling of the metal cutting process:Part I - Temperature rise distribution due to shear plane heat source[J]. International Journal of Mechanical Sciences, 2000, 42(9):1715-1752. [23] KOMANDURI R, HOU Z B. Thermal modeling of the metal cutting process - Part Ⅱ:Temperature rise distribution due to frictional heat source at the tool-chip interface[J]. International Journal of Mechanical Sciences, 2001, 43(1):57-88. [24] 姜峰, 言兰, 徐西鹏, 等. 刀具-切屑接触区的应力分布建模方法研究[J]. 机械工程学报, 2014, 50(5):188-193. JIANG Feng, YAN Lan, XU Xipeng, et al. Mechanical model of contact stress distribution between cutting tool and chip[J]. Journal of Mechanical Engineering, 2014, 50(5):188-193. |