• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (12): 141-147.doi: 10.3901/JME.2018.12.141

• 仪器科学与技术 • 上一篇    下一篇

基于矩形永磁体磁场信息的6自由度微位移精密测量

成荣1,2, 胡金春1,2,3, 杜胜武1,2, 朱煜1,2, 高阵雨1,2   

  1. 1. 清华大学摩擦学国家重点实验室 北京 100084;
    2. 清华大学精密超精密制造装备及控制北京市重点实验室 北京 100084;
    3. 重庆大学光电技术及系统教育部重点实验室 重庆 400044
  • 收稿日期:2017-07-15 修回日期:2017-12-02 出版日期:2018-06-20 发布日期:2018-06-20
  • 通讯作者: 胡金春(通信作者),男,1972年出生,博士,副教授。主要研究方向为精密与超精密检测,机电系统建模与控制。E-mail:hujinchun@tsinghua.edu.cn
  • 作者简介:成荣,女,1977年出生,博士,助理研究员。主要研究方向为高性能复合材料和精密测量技术。E-mail:chengr@mail.tsinghua.edu.cn;杜胜武,男,1990年出生,博士研究生。主要研究方向为精密与超精密测量技术。E-mail:dsw14@mails.tsinghua.edu.cn;朱煜,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为超精密动力学系统与控制、纳米精度工程与测控技术、IC制造装备机电系统等超精密机械与测控技术。E-mail:zhuyu@tsinghua.edu.cn;高阵雨,男,1986年出生,博士后。主要研究方向为精密测量技术。E-mail:zhedagzy@126.com
  • 基金资助:
    国家自然科学基金(51175296)和光电技术及系统教育部重点实验室访问学者基金资助项目。

Micro-displacement Precision Measurement of 6-DOF Based on Rectangular Permanent Magnet Magnetic Field Information

CHENG Rong1,2, HU Jinchun1,2,3, DU Shengwu1,2, ZHU Yu1,2, GAO Zhenyu1,2   

  1. 1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084;
    2. Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084;
    2. Ministry of Education Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Chongqing 400044
  • Received:2017-07-15 Revised:2017-12-02 Online:2018-06-20 Published:2018-06-20

摘要: 利用矩形永磁体自身有规律分布的磁场信息,提出一种使用霍尔传感器阵列作为传感检测模块的非线性计算测量方案。该方法可实现空间六自由度的微位移精密测量,并能保证测量轴间的严格数学正交特性。此方案利用矩形永磁体分布磁场与空间位置间的对应关系,建立永磁体的磁感应强度空间分布数学关系BX),作为测量模型,并设计均匀布置的霍尔传感器阵列检测空间磁感应强度B。然后,基于运动连续性原理,采用顺序求解法对测量模型BX)进行快速解算。通过高斯白噪声条件下的500次蒙特卡洛仿真验证了此方案的可行性。试验结果表明,在微位移10 mm测量范围内,XY平动测量误差标准差小于80 μm,Z向2 mm垂直位移范围内测量误差标准差小于10 μm,转动π/6范围内测量误差标准差小于5 mrad。

关键词: 磁场信息, 非线性计算测量, 精密测量, 顺序求解法

Abstract: Utilizing the inherent magnetic field information with regular distribution of rectangular permanent magnet, a new measuring method is proposed, nonlinear computational measurement scheme, which uses hall sensors array as sensor detection module, for achieving 6-DOF micro-displacement measurement with strict mathematical orthogonal properties. Magnetic induction model B(X) is built, using the correspondence relationship between distributed magnetic field and space position, as measurement model. A uniformly arranged hall sensors array is designed for detecting magnetic induction B. Based on the continuity principle of motion, nonlinear measurement model is resolved by successive solving algorithm. With additive white Gaussian noise, Monte Calro simulation result verifies its feasibility. The testing result shows that XY translation measurement error standard deviation is less than 80 μm in the micro-displacement measurement range of 10 mm, the measurement error standard deviation of Z direction is less than 10 μm in measurement range of 2 mm, and rotation measurement error standard deviation is less than 5 mrad in the range of π/6.

Key words: magnetic information, nonlinear computational measurement, precision measurement, successive solving algorithm

中图分类号: