• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (23): 141-151.doi: 10.3901/JME.2016.23.141

• 机械动力学 • 上一篇    下一篇

扫码分享

谐振管内非线性驻波的间断Galerkin方法*

韦娟1, 宁方立2, 郭琪磊2   

  1. 1. 西安电子科技大学通信工程学院 西安 710071;
    2. 西北工业大学机电学院 西安 710072
  • 出版日期:2016-12-05 发布日期:2016-12-05
  • 作者简介:

    韦娟,女,1973年出生,副教授,硕士研究生导师。主要研究方向为无线声传感器网络、气动声学。

    E-mail:weijuan@xidian.edu.cn

    宁方立(通信作者),男,1974年出生,教授,博士研究生导师。主要研究方向为强声密封、气动声学。

    E-mail:ningfl@nwpu.edu.cn

  • 基金资助:
    * 国家自然科学基金(51075329, 51375385, 51675425)、航空科学基金(20131553019)、陕西省自然科学基金(2016JZ013, 2014JM2-6116)和西北工业大学研究生创业种子基金(Z2015069, Z2016077)资助项目; 20160324收到初稿,20160906收到修改稿;

Discontinuous Galerkin Method for Nonlinear Standing Waves in Acoustic Resonators

WEI Juan1, NING Fangli2, GUO Qilei2   

  1. 1. School of Telecommunications Engineering, Xidian University, Xi’an 710071;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072
  • Online:2016-12-05 Published:2016-12-05

摘要:

基于伪一维瞬态可压缩Navier-Stokes方程和理想气体状态方程,并结合保持强稳定性的三阶Runge-Kutta格式和斜率限制器技术,构建一种整体轴向谐振激励下求解变截面谐振管内非线性驻波的间断Galerkin方法。分别对直圆柱形、指数形以及圆锥形谐振管内的非线性驻波进行数值仿真计算,通过与现有数值仿真结果对比,验证了本方法的正确性,并重现了已有试验中非线性驻波压力波形中的第二峰值。在直圆柱形和指数形谐振管内研究间断Galerkin方法的两种网格加密方式对于不同形状下谐振管内非线性驻波仿真计算的数值精度、消除数值振荡和准确捕捉激波的不同作用,以及不同CFL数对于数值精度的影响。在指数形谐振管内,通过与有限体积法不同网格数目下的数值仿真结果和计算时间对比,验证了本方法具有耗时短、效率高以及计算精度高的优点。在圆锥形谐振管内,研究不同流速下谐振管内压力和速度波形的变化,并发现随着流速的增加,谐振管小端处的压力幅值增加,大端处速度幅值也随之增加且速度波形中会产生激波。通过间断Galerkin方法分析研究几种谐振管内非线性驻波的各种物理属性,为谐振管形状优化提供了重要参考,也为实现谐振管内非线性驻波的工程应用奠定了良好的基础。

关键词: 非线性驻波, 间断Galerkin, 谐振管

Abstract:

Based on the pseudo-one-dimensional unsteady compressible Navier-Stokes equations, state equation for an ideal gas, the three-order Runge-Kutta equation and slope limiter, discontinuous Galerkin method for solving the nonlinear standing waves in resonators is proposed. The standing waves in cylindrical resonators, exponential resonators and conical resonators are simulated by the discontinuous Galerkin method, respectively. The results obtained with the proposed discontinuous Galerkin method are in agreement with the results obtained with other numerical methods. The second peaks in the pressure waveforms, which were found in the existed experiments, are simulated by the discontinuous Galerkin method. In cylindrical resonators and exponential resonators, the computational accuracy, the ability for removing the numerical oscillations and exactly capturing the shock waves with two kinds of methods for increasing the number of grids are evaluated. How to choose the CFL number for removing the numerical oscillations is also discussed. Comparing the simulation results and CPU time with those of the finite volume method, we find that timesaving, high efficiency and high computational accuracy are the advantages of the proposed discontinuous Galerkin method. In conical resonators, we research the pressure and velocity waveforms under different flow velocities. As increasing of the flow velocity, the amplitudes of pressure at the small end and velocity at the large end increase. The shock waves emerge in the velocity waveforms. Finally, based on the properties of standing waves in resonators studied by the discontinuous Galerkin method, the important references for optimizing the shapes of resonators and engineering applications of nonlinear standing waves are built.

Key words: discontinuous Galerkin method, nonlinear standing waves, resonators