• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (17): 127-136.doi: 10.3901/JME.2016.17.127

• 机构学及机器人 • 上一篇    下一篇

可变结构体机器人滚动步态参数优化*

杜汶娟1,2, 马书根1,3, 李斌1, 王明辉1, 平井慎一3   

  1. 1. 中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016;
    2. 中国科学院大学 北京 100049;
    3. 日本立命馆大学机器人系 滋贺 525-8577 日本
  • 出版日期:2016-09-05 发布日期:2016-09-05
  • 作者简介:杜汶娟,女,1989年出生,博士研究生。主要研究方向为可变结构体机器人。

    E-mail:duwenjuan@sia.cn

    E-mail:shugen@se.ritsumei.ac.jp

    王明辉(通信作者),男,1980 年出生,研究员。主要研究方向为机器人系统。

    E-mail:mhwang@sia.cn

  • 基金资助:
    * 国家自然科学基金资助项目(61473283); 20150923收到初稿,20160620收到修改稿;

Parameter Optimization for Rolling Motion of Structure Variable Robots

DU Wenjuan1,2, MA Shugen1,3, LI Bin1, WANG Minghui1, HIRAI Shinichi3   

  1. 1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016;
    2. University of Chinese Academy of Sciences, Beijing 100049;
    3. Department of Robotics, Ritsumeikan University, Shiga-ken 525-8577, Japan
  • Online:2016-09-05 Published:2016-09-05

摘要:

可变结构体机器人是一种基于张拉整体结构设计的新型移动机器人,由刚度较大的压杆和弹性较大的拉索构成,利用自身形变产生滚动。然而由于缺乏必要的参数分析,目前其结构设计多基于经验,滚动控制往往采用固定驱动参数,未考虑材料参数与驱动参数对机器人易滚动性、能耗、结构可靠性等特性的影响;而张拉整体结构内力耦合度高,传统动力学分析参数影响极其复杂。因此,为获得低能耗、易滚动且结构可靠的可变结构体机器人,将重力矩、临界驱动长度和驱动力作为性能参数,描述可变结构体机器人的上述三项性能。通过有限元法分析方法,建立驱动参数、材料参数与三项性能参数的关系。在此基础上,提出参数优化方案,指导参数选择。通过试验验证结果的正确性。

关键词: 材料参数, 可变结构体机器人, 性能参数, 驱动参数

Abstract:

Structure variable Robots are proposed as novel mobile robots based on tensegrity structures. They consist of rigid struts and tensile cables and can generate rolling gaits by self-deformation. Recent designs for tensegrity robots are mostly based on experience, and fixed drive parameters are used in the rolling control. The influence of the diving parameters and material parameters on the performance (such as rollability, energy consumption, and structure reliability) is necessarily but has not been discussed, since the tensegrity structures are highly coupled and the analysis based on the traditional kinetic methods are complex. For obtaining low energy consumption, high rollability and high reliability, the gravitational torque, critical driving length and driving force are used as performance criteria to describe three performances, and then the finite element method is applied to find out the relation between the driving parameters, material parameters and the three performance criteria, and optimal parameters are chosen to obtain better performance. A 6-strut tensegrity robot platform is built and experiments have been taken on this robot to test the validity of the computational results.

Key words: material parameters, performance parameters, structure variable robots, driving parameters