• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (14): 165-173.doi: 10.3901/JME.2016.14.165

• 可再生能源与工程热物理 • 上一篇    下一篇

扫码分享

动态气动载荷和构件振动对风力机气弹
特性的影响分析*

李德源, 汪显能, 莫文威, 张湘伟   

  1. 广东工业大学机电工程学院 广州 510006
  • 出版日期:2016-07-20 发布日期:2016-07-20
  • 作者简介:作者简介:李德源,男,1965年出生,博士,教授。主要研究方向为风力机结构与气动。

    E-mail:lidey@gdut.edu.cn

    汪显能(通信作者),男,1990年出生,硕士研究生。主要研究方向为风力机气动。

    E-mail:wxn_edu@163.com

  • 基金资助:
    * 国家自然科学基金资助项目(51276043); 20150629收到初稿,20151209收到修改稿;

Analysis on the Influence of Dynamic Aerodynamic Loads and Component Vibration of Wind Turbine on Aeroelastic Characteristics

LI Deyuan, WANG Xianneng, MO Wenwei, ZHANG Xiangwei   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006
  • Online:2016-07-20 Published:2016-07-20

摘要:

通过建立气弹耦合分析模型,研究叶片、塔架等构件的耦合振动对叶根气弹载荷的影响以及在静、动态气动模型下的叶根和塔底气弹载荷的差异。采用“超级单元”模型,将叶片、塔架和主轴离散为通过转动铰和弹簧、阻尼器连接的刚体系统,以反映这类构件较大的弹性变形和非线性振动。在叶素动量理论(Blade element momentum, BEM)基础上,引入Beddoes-Lesihman动态失速模型,以反映气动载荷的动态特性。应用计算多体动力学理论和风力机气动模型,建立受约束的风力机系统气弹耦合方程。算例以某5 MW风力机为研究对象,通过施加不同的约束条件,研究风轮以外其他构件振动对叶根气弹载荷的影响;通过静、动态气动分析模型,考察叶根和塔底气弹载荷的动态耦合效应。分析表明,塔架、主轴等构件的运动会显著影响叶根的气弹载荷;叶片的动态失速特性也对叶根的气弹载荷和疲劳载荷谱有较明显的影响。研究工作对于保证风力机安全稳定运行和疲劳寿命设计有重要的作用。

关键词: Beddoes-Lesihman, 动态失速, 多体模型, 气弹耦合, 风力机

Abstract:

Through establishing the aeroelastic coupling analysis model, both the influence of coupling vibration between blades and tower of a wind turbine on the blade root loads and the difference degree of blade root and tower bottom loads calculated by steady and dynamic aerodynamic models are researched. To reflect the large elastic deformation and nonlinear vibration of the wind turbine, ‘super-element’ model is used to discretize the blades, tower and drive shaft into into a series of rigid bodies connected with joints, springs and dampers. Then a multi-body system of the wind turbine is built. The Beddoes-Leishman(B-L) dynamic stall model is introduced to the blade element momentum(BEM) model to investigate the dynamic characteristics of aerodynamic loads. By adopting the theory of computational dynamics of multi-body system and wind turbine aerodynamic model, the aeroelastic coupling equations of the constrained wind turbine are established. A 5-MW wind turbine is chosen as the research subject. Via changing the constraint conditions, the effect of the wind rotor vibrations on the blade root aeroelastic loads is investigated. Using the steady and dynamic aerodynamic models, the dynamic coupling effect of blade root and tower bottom loads is studied by comparing the steady and dynamic aerodynamic models. The analysis indicates that the motions of of the components, such as the tower and drive shaft, have significant effects on the blade root aeroelastic loads. And the blade dynamic stall characteristics can considerably affect the blade root aeroelastic loads and fatigue loads spectrum. The research offers a foundation for the stable operation of wind turbine and fatigue life design.

Key words: aeroelastic coupling, Beddoes-Lesihman, dynamic stall, multi-body model, wind turbine