• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2015, Vol. 51 ›› Issue (9): 82-89.doi: 10.3901/JME.2015.09.082

• 机械动力学 • 上一篇    下一篇

扫码分享

非典型气动荷载下压缩机叶轮疲劳强度分析

栗玉领1, 2, 徐胜利3, 杨树桦4, 孟继纲4, 李祎曼1, 2, 黄金芷3, 关振群1, 2   

  1. 1.大连理工大学工业装备结构分析国家重点实验室;2.大连理工大学工程力学系;3.大连理工大学能源与动力学院;4.沈阳鼓风机集团有限公司
  • 出版日期:2015-05-05 发布日期:2015-05-05
  • 基金资助:
    国家重点基础研究发展计划(973计划,2009CB724302,2015CB057301)、中央高校基本科研业务费专项资金(DUT14QY36)和辽宁省博士启动基金(20131019)资助项目

Fatigue Strength Analysis of Compressor Impeller under Non-typical Aerodynamic Load

LI Yuling1, 2, XU Shengli3, YANG Shuhua4, MENG Jigang4, LI Yiman1, 2, HUANG Jinzhi3, GUAN Zhenqun1, 2   

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology; 2.Department of Engineering Mechanics, Dalian University of Technology; 3.School of Energy and Power Engineering, Dalian University of Technology; 4.Shenyang Blower Works Group Corporation
  • Online:2015-05-05 Published:2015-05-05

摘要: 针对气动激励下压缩机叶轮疲劳破坏问题,研究气动激振力的频域特性以及叶轮共振特性,提出相应的叶轮疲劳强度校核及失效分析方法。对某离心压缩机叶轮非定常气动荷载计算流体力学(Computational fluid dynamics, CFD)计算结果进行傅里叶变换,获得其频率、幅值与相位特征,重点分析气动激振荷载在相邻叶片间的相位关系。对于在相邻叶片间相位差循环对称分布的典型荷载分量,通过干涉图确定叶轮的共振模态,对于相位差非循环对称分布的非典型荷载分量,通过激振频率下叶轮动应力在各节径的分布情况确定叶轮的共振模态。基于叶轮静应力和共振动应力计算结果进行疲劳分析。结果表明,计算预测的疲劳破坏位置与实际发生疲劳裂纹位置相吻合,相位差非循环对称分布的非典型气动荷载激起叶轮零节径的共振是引起叶轮疲劳失效的主要原因。

关键词: 共振, 流体激振, 疲劳, 相位, 叶轮

Abstract: The frequency characteristics of aerodynamic load and the resonance of compressor impeller are studied for the fatigue failure of compressor impeller. The frequency, amplitude and phase of aerodynamic load are obtained from the unsteady computational fluid dynamics(CFD) results of compressor impeller using fast Fourier transform(FFT). The aerodynamic excitation phase between adjacent blades is analyzed in detail. For typical load with cyclic symmetric distribution of phase difference between adjacent blades, the interference diagram is used to determine the resonance modal. For non-typical load with non-cyclic symmetric distribution of phase difference, the resonance modal is determined by the result of dynamic stress in all nodal diameters under aerodynamic excitation frequency. Fatigue analysis is performed based on the static stress and resonance dynamic stress of impeller, which shows that the predicted fatigue position matches with the actual crack position. The zero nodal diameter resonance excited by non-typical fluid load with non-cyclic symmetric distribution of phase difference is proved to be the main cause of impeller fatigue failure.

Key words: fatigue, fluid excitation, impeller, phase, resonance

中图分类号: