• CN:11-2187/TH
  • ISSN:0577-6686

›› 2014, Vol. 50 ›› Issue (12): 36-43.

• 论文 • 上一篇    下一篇



  1. 合肥工业大学机械与汽车工程学院
  • 发布日期:2014-06-20

Microstructural Evolution of As-cast 42CrMo Ring during Hot Rolling

GUO Yina; LI Yongtang; GUO Zhe;DING Shuangfeng; QI Huiping; YAN Honghong;ZHANG Zhiqiang   

  1. School of Materials Science and Engineering, Taiyuan University of Science and Technology
  • Published:2014-06-20

摘要: 研究子午线轮胎回收处理的新方法。将超高压水射流技术应用于子午线轮胎橡胶的破碎回收,进行非淹没条件下超高压水射流破碎分离子午线轮胎橡胶试验,得到不同驱动压力破碎后的橡胶粉末和橡胶破碎断面,对轮胎橡胶、橡胶粉末进行粒度分析和低场核磁共振分析以评价破碎回收效果。采用流固耦合方法建立超高压水射流冲击轮胎橡胶的有限元分析模型,计算超高压水射流冲击作用下橡胶材料内部应力分布规律,应用材料失效准则,研究轮胎橡胶受水射流施加高速动载冲击下的破碎行为并与试验结果相验证。对轮胎橡胶断面和橡胶颗粒进行扫面电镜观察,分析轮胎橡胶和橡胶粉末的宏观形貌和微观形态,结合有限元模型计算结果,研究轮胎橡胶的微观破碎机理,认为在橡胶破碎过程中存在拉伸和剪切两种破坏机制,主要微观失效形式有沿晶破坏和穿晶断裂。

关键词: 超高压水射流;子午线轮胎;橡胶回收;流固耦合;破碎机理

Abstract: In order to avoid traditional ring parts hot rolling process problems of many times heating and so on, the as-cast 42CrMo alloy ring short process flow blank-casting and rolling compound forming process is taken as the research object, a series of experiments are performed on the Gleeble-1500D machine and metallographic microscope, the flow stress curves under temperatures of 850-1 150 ℃ and strain rates of 0.05-5 s−1 are obtained. The dislocation density variation and the grain growth kinetics of each dynamically recrystallizing grain are calculated by transforming the flow stress curves. In addition, the nucleation and the growth kinetics of dynamically recrystallized grains are evaluated. The grain topology deformation technology is studied, and the grain topology structures are optimized by use of the principal component analysis. The results show that the Kock-Mecking (KM) dislocation density equation can be employed to calculate the dislocation evolution during dynamic recrystallisation of 42CrMo alloy. The KM dislocation density model coupled with cellular automata method and optimized grain topology transformation technology can simulate dislocation density during dynamic recrystallization process accurately.

Key words: 42CrMo alloy;cellular automata;principal component analysis;microscale;blank-casting and rolling compound, forming