›› 2014, Vol. 50 ›› Issue (12): 17-24.
李栋;刘树林;刘颖慧;张宏利
LI Dong;LIU Shulin; LIU Yinghui; ZHANG Hongli
摘要: 针对在无故障样本情况下如何快速检测设备异常度问题,在引入自己空间边界样本概念的基础上,提出一种自适应超环检测器。在描述自适应超环检测器生成算法的基础上,以Iris数据集为例进行分析,发现与已有的异常检测方法相比,自适应超环检测器异常检测方法在区分有较清晰类边界数据时,具有更好检测性能。利用自适应超环检测器异常检测方法分析轴承状态数据,不仅能反映出轴承的各种状态,而且能通过设备的异常程度反映出同类故障的轻重程度。基于自适应超环检测器的设备异常度检测方法,是在学习设备正常运行数据的基础上,寻找自己空间的边界样本,结合其方位信息与自己样本半径,建立能完全覆盖状态空间的自适应超环检测器,不需要设备运行的故障数据,它适合对故障数据缺乏的设备进行有效的异常检测。
中图分类号: