• CN:11-2187/TH
  • ISSN:0577-6686

›› 2013, Vol. 49 ›› Issue (24): 117-127.

• 论文 • 上一篇    下一篇

扫码分享

分布式电驱动车辆的无味粒子滤波状态参数联合观测

褚文博;罗禹贡;陈龙;李克强   

  1. 清华大学汽车安全与节能国家重点实验室
  • 发布日期:2013-12-20

Vehicle State Estimation by Unscented Particle Filterin Distributed Electric Vehicle

CHU Wenbo;LUO Yugong;CHEN Long;LI Keqiang   

  1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University
  • Published:2013-12-20

摘要: 针对目前分布式电驱动车辆动力学领域中存在的状态参数观测体系不完善、观测精度低的问题,利用分布式电驱动车辆多信息源的特点,提出无味粒子滤波状态参数联合观测方法。基于非线性车辆动力学模型对分布式电驱动车辆的纵向速度、质心侧偏角、横摆角速度及各轮侧向力进行联合观测。同时,为提高侧向力的观测精度,采用非线性动态轮胎模型。在完成模型搭建的基础上,考虑到所搭建的车辆动力学模型具有强非线性,设计适用于强非线性模型的无味粒子滤波器对多个状态变量进行联合观测。而为进一步提高状态观测精度,进行量测噪声协方差的自适应调节。仿真和试验结果表明,所提出的状态观测方法能够提高分布式电驱动车辆状态参数观测精度和鲁棒性。

关键词: 分布式电驱动车辆, 无味粒子滤波, 状态观测

Abstract: Focusing on the existing problems in vehicle state estimation, such as deficient integrality system and low accuracy, unscented particle filter(UPF) is proposed, which utilizes the characteristic that distribute electric vehicle(DEV) has multi-information sources. Based on the nonlinear vehicle dynamic model, the novel system estimated longitudinal velocity, sideslip angle, yaw rate and tire lateral force simultaneously. In order to improve accuracy of tire lateral force, nonlinear dynamic tire model is utilized. UPF is developed according to the proposed vehicle and tire model. To improve the accuracy of UPF, measurement noise covariance is also self-adaptive regulated. Simulations and experiments show that the proposed method can improve robustness and accuracy of vehicle state estimation.

Key words: Distributed electric vehicle, State estimation, Unscented particle filter

中图分类号: