• CN:11-2187/TH
  • ISSN:0577-6686

›› 2011, Vol. 47 ›› Issue (7): 97-102.

• 论文 • 上一篇    下一篇

扫码分享

基于局域均值分解的机械故障欠定盲源分离方法研究

李志农;刘卫兵;易小兵   

  1. 南昌航空大学无损检测技术教育部重点实验室;郑州大学机械工程学院;河南省机电学校
  • 发布日期:2011-04-05

Underdetermined Blind Source Separation Method of Machine Faults Based on Local Mean Decomposition

LI Zhinong;LIU Weibing;YI Xiaobing   

  1. Key Laboratory of Nondestructive Testing of Ministry of Education, Nanchang Hangkong University School of Mechanical Engineering, Zhengzhou University Henan Mechanical Electrical Secondary School
  • Published:2011-04-05

摘要: 结合局域均值分解(Local mean decomposition, LMD)和盲源分离各自的特点,提出一种基于局域均值分解的欠定盲源分离方法。该方法利用LMD对观测信号进行分解,得到一系列的生产函数分量,将所得到的生产函数(Production functions,PF)分量和原观测信号组成新的观测信号。对构成的新观测信号进行白化处理和联合近似对角化,得到源信号的估计。该方法能有效解决传统的盲源分离方法要求源信号满足非高斯、平稳和相互独立的假设,且要求观测信号数多于源数的不足等问题。仿真结果表明,所提出的方法是有效的,在处理非平稳信号混合的欠定盲分离方面,比传统时频域的盲源分离方法得到了更好的分离效果。将提出的方法应用到滚动轴承的混合故障分离中,试验结果进一步验证该方法的有效性。

关键词: 故障诊断, 局域均值分解, 盲源分离, 欠定混合

Abstract: Combining the features of both local mean decomposition (LMD) and blind source separation, an underdetermined blind source separation method based on local mean decomposition is proposed. In this method, the observed signals are decomposed into a series of production functions (PF) by the LMD method, these PF and original observed signals then constitute new observed signals, and they undergo whitening process and joint approximate diagonalization, thus obtaining the estimate of source signals. This method can effectively overcome the deficiencies in the traditional mechanical fault source separation method, i.e. the traditional method is restricted to nongaussian, stationary and mutually independent source signals, and the number of observations is assumed to be more than the number of sources. The simulation result shows that the proposed method is effective, and obtains more satisfactory separation quality than the traditional blind source separation method based on time-frequency distribution, it can effectively process the underdetermined blind source separation of non-stationary signal mixtures. Finally the proposed method is applied to the separation of mixed faults of rolling bearing, and the result further verifies its effectivity.

Key words: Blind source separation, Fault diagnosis, Local mean decomposition (LMD), Underdetermined mixture

中图分类号: