• CN:11-2187/TH
  • ISSN:0577-6686

›› 2009, Vol. 45 ›› Issue (3): 169-173.

• 论文 • 上一篇    下一篇

扫码分享

双阈值单类支持矢量机在线故障检测算法及应用

胡雷;胡茑庆;秦国军   

  1. 国防科学技术大学机电工程与自动化学院
  • 发布日期:2009-03-15

Online Fault Detection Algorithm Based on Double-threshold OCSVM and Its Application

HU Lei;HU Niaoqing;QIN Guojun   

  1. College of Mechatronics Engineering and Automation, National University of Defense Technology
  • Published:2009-03-15

摘要: 为了将单类支持矢量机应用于机械系统的在线故障检测,提出一种双阈值单类支持矢量机在线检测算法。该算法引入序贯最小优化算法以提高计算效率,使用两层决策边界以区分故障样本和非边界支持矢量,并对检测模型进行在线自适应地更新,同时剔除故障样本对检测模型自适应更新的贡献,使得该算法能够有效剔除单类支持矢量机的原理性误差和因工况变化引起的误差,提高了检测精度。将该算法应用于某型液体火箭发动机涡轮泵振动信号的故障检测,结果表明,该算法可以在无虚警的情况下快速有效地检测涡轮泵故障。

关键词: 单类支持矢量机, 涡轮泵故障检测, 新异类检测, 序贯最小优化

Abstract: In order to improve one-class support vector machine (OCSVM)’s performance, that is OCSVM’s training efficiency and decision precision, a double threshold OCSVM online detection (DTOOD) algorithm is proposed. In DTOOD, the OCSVM detection model with two-layer thresholds can separate outliers into non-margin support vectors and real abnormal samples. And the detection model can be updated online adaptively without real abnormal samples as they are omitted in future training sets. Meanwhile, sequential minimal optimization algorithm for OCSVM is introduced to improve the training efficiency. DTOOD is applied to the analysis of a liquid rocket engine turbopump historical vibration data, and the results show that DTOOD can detect the faults of the turbopump very well without any false alarm. And the computation is fast enough to assure DTOOD’s ability of real time fault detection.

Key words: Novelty detection, One-class support vector machine, Sequential minimal optimization, Turbopump fault detection

中图分类号: