• CN:11-2187/TH
  • ISSN:0577-6686

›› 2009, Vol. 45 ›› Issue (11): 46-51.

• 论文 • 上一篇    下一篇

扫码分享

球形机器人爬坡状态下动力学建模及最优控制器设计

岳明;邓宗全   

  1. 哈尔滨工业大学机电工程学院;大连理工大学汽车工程学院
  • 发布日期:2009-11-15

Dynamic Modeling and Optimal Controller Design of a Spherical Robot in Climbing State

YUE Ming;DENG Zongquan   

  1. School of Mechatronics Engineering, Harbin Institute of Technology School of Automotive Engineering, Dalian University of Technology
  • Published:2009-11-15

摘要: 球形机器人作为一种移动式的机器人,不可避免地会遇到爬坡的问题。结合所设计的球形机器人,详细分析其在爬坡状态下各状态变量的描述方法,给出机器人能够爬上坡角的计算公式,并且提出临界摆角的概念。利用基于耗散形式的拉格朗日方程推导出准确描述球形机器人爬坡状态的动力学方程,通过所提出的临界摆角,将动力学方程进行有效地线性化,采用坐标变换的方法来解决方程中的常数项问题,最终系统被转化为状态空间的形式。在机器人系统的全状态可测的情况下,考虑到机器人在爬坡时运动平稳、能耗小是实际需要,设计相应的线性二次型目标函数,最后通过设计状态反馈矩阵控制机器人在坡面上以期望速度进行运动,仿真结果证明了所设计控制方法的有效性。

关键词: 拉格朗日方程, 临界摆角, 爬坡能力, 最优控制, 花键副, 接触压力, 微动摩擦, 微动磨损, 相对滑移, 有限元法

Abstract: Spherical robot is a kind of mobile robot, and then it is inevitable to encounter with the problem of climbing slope. According to the spherical robot designed, each independent variable describing the state of climbing an arbitrary slope is analyzed. The calculation formula to estimate climbing capability is given and simultaneously the concept of critical pendulum angle is proposed. Dynamic equations of the robot climbing slope is derived from using Lagrangian function equation based on energy dissipation. In order to solve the problem of constant terms in the equation, the coordinate transformation method is adopted, and ultimately the system is converted into state-space form. When every state of the robot system can be measured, a corresponding linear quadratic objective function is designed with the consideration of the practical requirements of both steady movement and less energy assumption. At last, the state feedback matrix is designed, which can control the robot to move at an expected velocity on slope, and the simulation results prove the validity of the above control technique.

Key words: Climbing capability, Critical pendulum angle, Lagrange equation, Optimal control, contact pressure, finite element method, fretting friction, fretting wear, relative slip, spline coupling

中图分类号: