• CN:11-2187/TH
  • ISSN:0577-6686

›› 2009, Vol. 45 ›› Issue (1): 88-93.

• 论文 • 上一篇    下一篇

扫码分享

二元合金三维枝晶生长的相场法数值模拟

朱昌盛;冯力;王智平;肖荣振   

  1. 兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室;兰州理工大学CAD中心
  • 发布日期:2009-01-15

Numerical Simulation of Three-dimensional Dendritic Growth for a Binary Alloy Using Phase-field Method

ZHU Changsheng;FENG Li;WANG Zhiping;XIAO Rongzhen   

  1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology CAD Center, Lanzhou University of Technology
  • Published:2009-01-15

摘要: 三维枝晶生长相场法模拟由于计算量巨大,同时无法证明微观可解理论是否适用于三维相场模型,因此,对该领域的研究相对较少且进展缓慢。基于耦合温度场与溶质场的相场模型,设计基于动态计算区域的加速算法求解相场模型,以Ni-Cu二元合金的三维模拟计算为例对加速算法进行验证,成功实现了单机上难以实现的三维枝晶生长过程的模拟计算。计算结果表明,模拟计算真实地再现了二元合金三维凝固过程中树枝晶的生长过程,并得到了与结晶理论相一致的枝晶生长规律。加速算法可大大减小计算时间,降低计算模拟对计算机硬件的依赖性,加速效果明显,冗余量小,精确度高,模拟结果更接近工程实际。

关键词: 数值模拟, 微观组织, 相场方法, 枝晶生长

Abstract: Due to the enormous computing amount of 3-D phase-field simulation of dendritic growth, at the same time, whether the microscopic solvability theory is applicable to the 3D phase-field model or not cannot be proved, therefore, the research in the field is relatively scarce, also, the progress is slow. Based on the phase-field approach which incorporates both heat and solute equations, an accelerated arithmetic algorithm of the dynamic computing regions is designed to solve phase-field model, taking Ni-Cu binary alloy for example, the accelerated arithmetic algorithm for 3D numerical simulation is validated, and 3D dendritic growth is implemented successfully which is difficult to realize on single personal computer. The computed results indicate that the numerical simulation exhibits veritably the 3D dendritic growth for binary alloy, and obtains dendritic growth law being consistent with crystallization theory. Also, the accelerated algorithm can reduce the computing time and the dependence of computer simulation on the hardware, thereby resulting in obvious acceleration effect, little redundancy, high precision, and simulation results more close to the real dendritic growth.

Key words: Dendritic growth, Microstructure, Numerical simulation, Phase-field method

中图分类号: