• CN:11-2187/TH
  • ISSN:0577-6686

›› 2005, Vol. 41 ›› Issue (10): 44-50.

• 论文 • 上一篇    下一篇

扫码分享

螺旋系在不同空间下的相关性

李仕华;黄真   

  1. 燕山大学机械工程学院
  • 发布日期:2005-10-15

SCREW SYSTEM UNDER DIFFERENT GEOMETRICAL CONDITION

Li Shihua; Huang Zhen   

  1. College of Mechanical Engineering, University of Yanshan
  • Published:2005-10-15

摘要: 在利用螺旋理论研究某些机构学问题时,螺旋系相关性的判别是关键问题。采用线性代数理论讨论了在3力3偶、4力2偶及5力1偶的情况下螺旋系的相关性。将螺旋系中的螺旋组合成矩阵,通过判别矩阵的秩,来确定螺旋系的相关性,给出了相关性的判据,并列出了在不同的几何条件下的相关性列表。研究对并联机器人自由度的确定、主动输入选择等运动学问题均有重要的意义。

关键词: 并联机构, 螺旋理论, 相关性

Abstract: As some kinematics problems are studied by the screw theory, the dependency of screw system is a key problem. By linear algebra theory, the dependency of screw system which is constituted by three line vectors and three couples, four line vectors and two couples or five line vectors and one couple, is discussed. A matrix is composed of screws. The dependency of screw system is determined by the order of the matrix. Criterions of the dependency are given. The dependency on different geometrical conditions are listed. All of the results are useful for studying parallel mechanism kinematics, such as degrees of freedom and input selecting.

Key words: Dependency, Parallel manipulator, Screws theory

中图分类号: