• CN:11-2187/TH
  • ISSN:0577-6686

›› 2002, Vol. 38 ›› Issue (7): 6-11.

• 论文 • 上一篇    下一篇

扫码分享

小波局部极大模方法在轴心轨迹辨识中的应用研究

彭志科;何永勇;卢青;陈真勇;褚福磊   

  1. 清华大学精密仪器与机械学系
  • 发布日期:2002-07-15

APPLY WAVELET MODULUS MAXIMA TO IDENTIFY SHAFT CENTER ORBIT

Peng Zhike; He Yongyong; Lu Qing Chen Zhenyong; Chu Fulei   

  1. Tsinghua University
  • Published:2002-07-15

摘要: 提出了一种新的基于小波局部极大模的轴心轨迹辨识方法。该方法通过对轴心轨迹的Θ-s曲线进行连续小波变换,提取小波局部极大模线,计算每条局部极大模线对应的Lipschitz指数α。最后用α为正的局部极大模线的条数、正α的平均值、α为负的局部极大模线的条数和负α的平均值等4个量作为轴心轨迹特征,并以这些特征量作为BP网络的输入进行分类识别。采用径向碰摩、联轴器不对中、油膜涡动和转子不平衡等4种故障的试验数据对该方法进行检验。结果表明,该方法有特征量少、神经网络的训练速度快和系统识别正确率高的优点。

关键词: Lipschitz指数, Θ-s曲线, 局部极大模, 小波变换, 轴心轨迹, 故障诊断, 航空发动机, 奇异值分解, 声模态, 压气机

Abstract: A novel approach for identification of shaft center orbits is proposed, which bases on wavelet modulus maxima. In this approach, continuous wavelet transforrn is put on @-S diagram of shaft center orbits, then, maxima Iines are extracted and Lipschltz exponents a of every maxima line are calculated by non-linear least square method. The number of maxima Iines with positive a, the mean of the positive a, the number of maxima Iines with negative a and the mean of the negative a are used as features of the shaft center orbits. In succession, the four features are used as the inputs of BP network to classify shaft center orbits. The experimental data of four kinds of faults: rub-impact, oil vvhirl, coupling misalignment and unbalance are used to test the vvavelet modulus maxima based method. The test result indicates that the method can fulfill classification accurately and the method possesses advantages of few features used and of fast training processing of nervvork.

Key words: Shaft center orbit, 8-s diagram, Wavelet transform Modulus maxima Lipschitz exponent, Acoustic mode, Aero-engine, Compressor, Failure diagnosis, Singular value decomposition(SVD)

中图分类号: