• CN:11-2187/TH
  • ISSN:0577-6686

›› 1979, Vol. 15 ›› Issue (1): 52-64.

• 论文 • 上一篇    下一篇

扫码分享

论共轭齿面的法曲率关系及应用

严志达   

  1. 南开大学
  • 发布日期:1979-01-01

The Induced Curvature of Conjugate Tooth-surfaces and Its Applications

Yen Chihda   

  1. Nankai University
  • Published:1979-01-01

摘要: 本文齿轮啮合理论引起数学工作者的兴趣应追溯到Euler,他首先引进渐开线齿轮,在工业上起着重要的作用。随着近代工业发展,新型齿轮的出现,特别是锥齿轮和双典型齿轮的研制,所涉及的问题,这较过去为复杂。因此从数学的角度系统地讨论齿轮的啮合理论,引进适当的方法,以解决理论和实践方面的新问题,是很必要的。作者根据特殊矛盾应用特殊方法解决的原则,引用动标和相对微分(它是相对速度的推广)的概念系统地对啮合理论中的一些基本问题作了探讨。本文就是要介绍这个方法,以及得到的一些新的结果。首先是齿面啮合界限点的确定,得到两个基本不变量,界限函数。其次是共轭齿面在啮合点的法曲率间的关系,诱导法曲率公式,最后涉及上述公式的一些应用。本文另一个特点即论证完全是解析的,很少借助于直观。这样就使我们的方法便于掌握和应用。文内论证可能不是详细的,有些也未加证明,特别中与微分几何有关的部分。可参阅后面引述的论文。这些工作完成于1972年。1973年和1974年曾以油印本先后在上海和天津发表,其中后一油印本是为天津齿轮工作者所作报告的讲义。

Abstract: Acting on the principle of solving a particular contradiction by means of a particular method, the author applies, in this paper, the concepts of moving coordinate system and relative differentiation with respect to such a system in the discussion of some fundamental problems on the theory of meshing. Such concepts and the results obtained from them are more or less known to different authors. In the following paragraphs we show how the new method has been used and how some new results have been obtained. We analyse the limiting points of gear tooth-surfaces and thus obtain two fundamental invariants, which in this case may be called limiting functions. From these is derived the relationship between normal curvatures of conjugate tooth-surfaces at the meshing point, I. E. the induced normal curvature formula. Finally we mention some applications of the above-mentioned formula. Another feature of this paper is that the proof is entirely analytical, with no resort to intuition at all.