摘要: 直到目前,关于滑动接触共轭曲面的原理方面,尚没有一个完整而普遍的理论。本文的目的,就是企图满足这方面的要求;并以连续滑动接触的共轭条件为基础,而给予共轭曲面的计算一个普遍而全面的分析。在讨论中,由于采用科学的纯分析法,替代了一般所习常采用的图解分析混合法(例如见文献[1,2,3,4],因而使分析适用的范围大大地推广了。打破了等速比、固定中心距、无轴向位移及两轴或是平行或是垂直等等的限制,而使其可适用以分析更普遍性的共轭问题,即不等速比、变动中心距、有轴向位移以及两轴间夹角为某任何值时的共轭问题,同时由于纯分析法的严格逻辑性,更可纠正图解分析混合法中,由于主观推论或由于图形复杂以致辨别不清等所造成的一些错误结论。在本文中就文献[1,3]中的一些错误作了一些讨论(见本文二、(三)节、九(一)节及七、(二)节)。以外,本文还证明了一些直到目前尚未有严格证明的或尚未报导过的一些结论。例如渐开线螺旋齿轮的共轭问题(五、(三)节)、“椭圆性共轭”曲面(六、节)、“转动位移互换特性”关系式(七、节)等。关于连续滚动接触共轭曲面(即节面)的分析,是作为连续滑动接触共轭的一个蜕变情况而加以讨论的;并对其存在的条件作了结论(八、(一)节)。最后(九、节),对共轭曲面原理在实际工业生产中的广泛应用,作了初步的探讨。并对制造“双曲线”齿轮时的范成运动,较之文献[5,6]作了更简练而严格的证明(九、(二)节)。为了在分析计算过程中简化算式,因此采用了向量分析的运算。所采用的向量计算符号均系根据文献[7]。但最后的计算结果,为了便于应用起见,均系利用直角座标系统表示之。