• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 365-374.doi: 10.3901/JME.2025.21.365

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

基于相关性分析的自适应变权组合代理模型

王一棠1,2,3, 庞勇1,2, 宋学官1,2   

  1. 1. 大连理工大学机械工程学院 大连 116024;
    2. 高性能精密制造全国重点实验室 大连 116024;
    3. 辽宁工业大学汽车与交通学院 锦州 121001
  • 收稿日期:2024-11-04 修回日期:2025-04-11 发布日期:2025-12-27
  • 作者简介:王一棠,女,1993年出生,博士,讲师。主要研究方向为工业大数据挖掘及数据驱动的预测技术。E-mail:524429475@qq.com
    宋学官(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为多学科耦合建模与优化设计、工业大数据挖掘及数据驱动的预测技术、装备智能化与数字孪生。E-mail:sxg@dlut.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB702502)和辽宁省博士科研启动基金计划(2025-BS-0501)资助项目。

An Adaptive Variable Weight Ensemble of Surrogate Models Based on Correlation Analysis

WANG Yitang1,2,3, PANG Yong1,2, SONG Xueguan1,2   

  1. 1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024;
    2. State Key Laboratory of High-performance Precision Manufacturing, Dalian 116024;
    3. School of Automotive and Transportation Engineering, Liaoning University of Technology, Jinzhou 121001
  • Received:2024-11-04 Revised:2025-04-11 Published:2025-12-27

摘要: 为了弥补工业产品开发中设计周期长、实验成本高等缺陷,代理模型已经成为工程应用中不可或缺的一项技术。利用多种类型单一代理模型进行组合建模可提高模型的稳定性和预测精度。但是,单一代理模型的组合建模仍面临模型复杂度高、泛化能力差等挑战。在此背景下,提出了一种基于相关性分析的自适应变权组合代理模型。该模型分为代理模型库筛选和自适应权重计算两部分。在模型筛选阶段,首先将斯皮尔曼相关系数和交叉验证误差相结合作为模型筛选的基准,进而得到全局最优模型和代理模型库。然后,利用误差倒数变权法,为模型库中各组分代理模型计算自适应权重系数。最后,根据组合代理模型公式将各组分模型进行连接,得到最终预测模型。所提组合代理模型考虑了各单一代理模型的全局精度和局部精度。试验结果表明,所提模型与对比的组合代理模型相比,具有更好的性能。

关键词: 代理模型, 组合建模, 模型筛选, 交叉验证, 自适应权重

Abstract: To compensate for long design cycles and high experimentation costs in industrial product development, surrogate model has become an indispensable technique for engineering applications. Ensemble modeling using multiple types of single surrogate models can improve the stability and prediction accuracy of the models. However, the ensemble modeling of single surrogate models still faces challenges such as high model complexity and poor generalization ability. In this context, an adaptive variable weight ensemble surrogate model based on correlation analysis is proposed. The model is divided into two parts: surrogate model library selection and adaptive weight calculation. In the model selection phase, the Spielman correlation coefficient and the cross-validation error are first combined as the benchmark for model selection, and then the global optimal model and the surrogate model library are obtained. Then, the adaptive weight coefficients are calculated for each component surrogate model in the model library using the the error inverse variance weight method. Finally, the component models are connected according to the ensemble surrogate model formula to obtain the final prediction model. The proposed surrogate model considers the global accuracy and local accuracy of each single surrogate model. The experimental results show that the proposed model has better performance compared with the ensemble surrogate models.

Key words: surrogate model, ensemble modeling, model selection, cross-validation, adaptive weight factor

中图分类号: