• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 143-151.doi: 10.3901/JME.2025.21.143

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

面向灵巧操作的多功能三指软体机械手

孙先涛1, 钟明升1, 高崇1, 王骜1, 陈伟海2   

  1. 1. 安徽大学电气工程与自动化学院 合肥 230601;
    2. 北京航空航天大学自动化科学与电气工程学院 北京 100191
  • 收稿日期:2025-04-28 修回日期:2025-09-12 发布日期:2025-12-27
  • 作者简介:孙先涛,男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为自适应抓取、软体机器人、变刚度驱动、精密机械。E-mail:xtsun@ahu.edu.cn
    钟明升,男,1999年出生,硕士研究生。主要研究方向为软体机器人。E-mail:z22301155@stu.ahu.edu.cn
    高崇,男,2002年出生,硕士研究生。主要研究方向为软体机器人。E-mail:z24301187@stu.ahu.edu.cn
    王骜,男,2002年出生,硕士研究生。主要研究方向为软体机器人。E-mail:z24301185@stu.ahu.edu.cn
    陈伟海(通信作者),男,1955年出生,博士,教授,博士研究生导师。主要研究方向为机器人抓取,康复机器人与精密操作。E-mail:whchen@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(52575001, 52005001)和安徽省教育厅(2024AH040010)资助项目。

Multifunctional Three-finger Soft Gripper for Dexterous Operation

SUN Xiantao1, ZHONG Mingsheng1, GAO Chong1, WANG Ao1, CHEN Weihai2   

  1. 1. School of Electrical Engineering and Automation, Anhui University, Hefei 230601;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191
  • Received:2025-04-28 Revised:2025-09-12 Published:2025-12-27

摘要: 软体机械手凭借其柔顺性、自适应性和安全性等固有特性,在机器人抓取与操作领域展现出传统刚性机构无法比拟的优势。提出一种新型多功能气动三指软体机械手,可实现易损物体的自适应安全抓取和灵巧操作。该机械手采用双自由度气动协同驱动设计,各手指由弯曲驱动器和侧摆驱动器构成:前者创新性地采用倾斜气动网络结构,相较于传统垂直网络结构,其弯曲角度和接触力得到较大提升(19.5%和20.1%);后者通过仿生设计实现类人手指的±16.5°侧向摆动。基于超弹性材料的Mooney-Rivlin本构模型,建立了包含运动学与准静力学的耦合数学模型,精确预测软体手指在加压空气下的弯曲角度和接触力(理论与仿真结果误差分别小于2%和9.2%)。通过有限元仿真研究了软体手指的机械性能,揭示腔室倾斜角对弯曲角度和接触力的影响规律。最后,通过3D打印和成型技术制造软体机械手样机,实验表明该机械手能够抓取不同尺寸、形状、材质和重量的物体,并能执行诸如旋转开启瓶盖等灵巧的操作任务,验证了结构设计与控制策略的有效性。

关键词: 软体机械手, 气动驱动器, 灵巧操作, 自适应抓取

Abstract: Soft grippers, with their inherent compliance, adaptability, and safety, have demonstrated advantages in robotic grasping and manipulation that traditional rigid mechanisms cannot match. This research presents a novel multifunctional pneumatically actuated three-finger soft robotic gripper, which achieves adaptive, safe grasping of fragile objects and dexterous manipulation. The gripper employs a dual-degree-of-freedom pneumatic coordinated actuation design, with each finger consisting of a bending actuator and a lateral swinging actuator. The bending actuator innovatively adopts an inclined pneumatic network structure, which, compared to the traditional vertical network structure, significantly enhances the bending angle and contact force by 19.5% and 20.1%, respectively. The lateral swinging actuator, inspired by biomimetic design, enables ±16.5° side-to-side motion similar to that of a human finger. A coupled mathematical model integrating kinematics and quasi-static mechanics is established based on the Mooney-Rivlin constitutive model for hyperelastic materials, accurately predicting the bending angles and contact forces of the soft fingers under pneumatic actuation (with theoretical and simulation errors less than 2% and 9.2%, respectively). Finite element simulations are conducted to investigate the performance of the soft fingers, revealing the influence of chamber inclination angle on bending angle and contact force. Finally, a prototype of the soft robotic hand is fabricated using 3D printing and molding techniques. Experiments demonstrated that the gripper could grasp objects of various sizes, shapes, materials, and weights, and perform dexterous tasks such as twisting open a bottle cap, thus validating the effectiveness of the structural design and control strategy.

Key words: soft gripper, pneumatic actuator, dexterous manipulation, adaptive grasping

中图分类号: