• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 30-39.doi: 10.3901/JME.2025.20.030

• 仪器科学与技术 • 上一篇    

扫码分享

扫描电镜内原位微纳米压痕测试装置设计与试验研究

衣春学1,2, 刘仁霖1,2, 张旭1,2, 黄虎1,2, 赵宏伟1,2   

  1. 1. 吉林大学数控装备可靠性教育部重点实验室 长春 130025;
    2. 吉林大学机械与航空航天工程学院 长春 130025
  • 收稿日期:2024-11-08 修回日期:2025-06-08 发布日期:2025-12-03
  • 作者简介:衣春学,男,2000年出生,博士研究生。主要研究方向为纳米压痕测试仪器开发。E-mail:yicx22@mails.jlu.edu.cn
    黄虎(通信作者),男,1986年出生,博士,教授,博士研究生导师。主要研究方向为纳米压痕/划痕测试技术与仪器、表面改性与功能化和压电精密驱动新原理与新技术等。E-mail:huanghu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(52075221)、吉林省重点研发计划(20240302066GX)和吉林大学研究生创新基金(2024CX210)资助项目。

Design and Experimental Study of an in-situ Micro/Nano Indentation Testing Device Inside the Scanning Electron Microscope

YI Chunxue1,2, LIU Renlin1,2, ZHANG Xu1,2, HUANG Hu1,2, ZHAO Hongwei1,2   

  1. 1. Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun 130025;
    2. School of Mechanical & Aerospace Engineering, Jilin University, Changchun 130025
  • Received:2024-11-08 Revised:2025-06-08 Published:2025-12-03

摘要: 扫描电镜(Scanning electron microscope,SEM)内的原位压痕测试技术是研究揭示接触载荷作用下材料变形损伤过程与机制的有效手段,但目前该技术基本被国外垄断。为此,设计研发具有自主知识产权的SEM内原位微纳米压痕测试装置,其结构尺寸为130 mm×56 mm×53 mm。详细阐述该装置的结构组成、机电系统框架和测试流程,并对其核心器件进行标定与性能测试。经标定,对应于500 mN载荷与19 μm位移量程,该装置的载荷与位移噪声分别小于0.03 mN和2 nm,满足微纳米压痕测试性能要求。根据参考映射法,对该装置的机架柔度进行校准,校准后可获得与商业化压痕仪器基本重合的载荷-深度曲线。最后,利用立方角压头在SEM内开展锆基非晶合金的原位压痕试验,探究最大压入载荷与加载速率对非晶合金锯齿流变行为与压痕诱导剪切带特征的影响,验证该装置在SEM内开展微纳米压痕测试的实际应用价值。

关键词: 原位测试, 微纳米压痕, 扫描电镜, 非晶合金, 锯齿流变, 剪切带

Abstract: The in-situ indentation testing inside the scanning electron microscope(SEM) is an effective technology for investigating and revealing the deformation damage process and mechanism of materials under contact loading. However, this technology is basically monopolized by foreign countries. Accordingly, an in-situ micro/nano indentation testing device inside the SEM with independent intellectual property rights is designed and developed, and its size is 130 mm×56 mm×53 mm. The structure, electromechanical system and testing processes of this device are described in detail, along with the calibration and performance testing of its core components. Corresponding to the load range of 500 mN and displacement range of 19 μm, the load noise and displacement noise are less than 0.03 mN and 2 nm respectively, which meets the performance requirements for micro/nano indentation testing. Using the reference mapping method, the frame compliance of the developed device is calibrated. The load-depth curve obtained by the device after calibration basically coincides with that obtained by the commercial indentation instrument. Finally, the in-situ indentation tests of the Zr-based metallic glass are performed inside the SEM by using the cubic corner indenter. The effects of maximum indentation load and loading rate on the serrated flow behavior and the characteristics of indentation-induced shear bands of metallic glasses are investigated, verifying the practical application potential of this device for performing micro/nano indentation testing inside the SEM.

Key words: in-situ testing, micro/nano indentation, scanning electron microscope, metallic glass, serrated flow, shear band

中图分类号: