• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 76-85.doi: 10.3901/JME.2025.18.076

• 材料科学与工程 • 上一篇    

扫码分享

热输入对CF/PPS复合材料感应焊接的影响:多物理场耦合的焊接工艺窗口

沈亮量1,2,3, 肖娟1,2,3, 徐剑1,2,3, 蹇锡高1, 林剑峰4, 任志英4   

  1. 1. 大连理工大学化工学院 大连 200240;
    2. 中国科学院宁波材料技术与工程研究所全省数据驱动高安全能源材料及应用重点实验室 宁波 315201;
    3. 中国科学院宁波材料技术与工程研究所宁波市特种能源材料与化学重点实验室 宁波 315201;
    4. 福州大学机械工程及自动化学院 福州 350116
  • 收稿日期:2024-06-14 修回日期:2025-01-05 发布日期:2025-11-08
  • 作者简介:沈亮量,男,1995年出生,博士研究生。主要研究方向为复合材料多尺度性能与焊接工艺。E-mail:llshenlyndon@126.com;肖娟,女,1995年出生,博士研究生。主要研究方向为复合材料感应焊接工艺。E-mail:xj9587@126.com;任志英(通信作者),女,1980年出生,博士,教授,博士研究生导师。主要研究方向为金属橡胶材料。E-mail:renzyrose@126.com
  • 基金资助:
    国家自然科学基金NSAF联合基金(U2330202)、国家自然科学基金(52175162,51975123,52075526,91860204)、福建省科技计划区域发展(2024H4017)和福建省重点技术创新和产业化(2024XQ010,2023XQ005)资助项目

Impact of Thermal Input on Induction Welding of CF/PPS Composites: Design of a Welding Process Window with Multiphysical Coupling

SHEN Liangliang1,2,3, XIAO Juan1,2,3, XU Jian1,2,3, JIAN Xigao1, LIN Jianfeng4, REN Zhiying4   

  1. 1. School of Chemical Engineering, Dalian University of Technology, Dalian 200240;
    2. Zhejiang Provincial Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201;
    3. Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201;
    4. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116
  • Received:2024-06-14 Revised:2025-01-05 Published:2025-11-08

摘要: 以碳纤维增强热塑性复合材料CF/PPS为对象,基于电磁场-热传导耦合理论,建立了三维瞬态多物理场有限元模型,系统模拟了焊接界面温度场动态演变过程。通过自主搭建的感应焊试验平台,结合单搭接剪切试验与扫描电子显微镜(Scanning electron microscopy, SEM)观测,验证了模型的有效性(模型预测值与试验数据偏差<8%),揭示了焊接界面温度梯度在厚度方向的分布规律。研究结果表明:在20 A电流条件下,有效熔宽随焊接时间呈线性增长(30 s内);但当焊接时间超过30 s时,局部温度突破树脂基体热分解阈值(~400 ℃),导致界面出现热降解缺陷并伴随剪切强度显著下降(由18.6 MPa降至12.3 MPa)。通过多尺度试验表征与多物理场耦合分析,明确了热输入参数与树脂熔融行为之间的量化关系:适当热输入可促进树脂均匀熔融形成致密界面,而过度热输入会引发树脂热解碳化及气孔缺陷。本研究创新性地提出基于温度窗口的工艺优化模型,揭示了热输入-界面熔合-力学性能的关联机制,为CF/PPS复合材料感应焊接工艺窗口的精确控制提供了理论依据。研究成果不仅拓展了热塑性复合材料焊接理论体系,也为航空航天轻量化结构的高效制造提供了新的技术路径。

关键词: 碳纤维复合材料, 感应焊接, 数值模拟, 传质传热, 多尺度分析

Abstract: A three-dimensional transient multiphysics finite element model is developed for carbon fiber-reinforced thermoplastic composite CF/PPS based on the electromagnetic-thermal coupling theory, systematically simulating the dynamic evolution of the temperature field at the welding interface. The model’s validity is verified using an independently constructed induction welding experimental platform, combined with single-lap shear tests and scanning electron microscopy (SEM) observations, showing a deviation of less than 8% between model predictions and experimental data. The distribution pattern of the temperature gradient along the thickness direction at the welding interface is also revealed. The results indicate that under a 20 A current, the effective molten width increases linearly with welding time within 30 s. However, when the welding time exceeds 30 s, local temperatures surpass the thermal decomposition threshold of the resin matrix (~400 ℃), leading to thermal degradation defects at the interface and a significant reduction in shear strength (from 18.6 MPa to 12.3 MPa). Through multiscale experimental characterization and multiphysics coupling analysis, a quantitative relationship between heat input parameters and resin melting behavior is established. Appropriate heat input promotes uniform resin melting and the formation of a dense interface, whereas excessive heat input induces resin pyrolysis, carbonization, and porosity defects. A novel process optimization model based on a temperature window is proposed, elucidating the correlation between heat input, interface fusion, and mechanical performance. This provides a theoretical basis for precise control of the process window in CF/PPS composite induction welding. The findings not only expand the theoretical framework of thermoplastic composite welding but also offer a new technological pathway for the efficient manufacturing of lightweight aerospace structures.

Key words: carbon fiber composites, induction welding, numerical simulation, mass and heat transfer, multiscale analysis

中图分类号: