• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 64-75.doi: 10.3901/JME.2025.18.064

• 材料科学与工程 • 上一篇    

扫码分享

点焊质量诊断模型的泛化性能研究及改进

宋强1,2, 王闻杰1,2,3, 贺晓斌3, 夏裕俊1,2, 李永兵1,2   

  1. 1. 上海交通大学上海市复杂薄板结构数字化制造重点实验室 上海 200240;
    2. 上海交通大学机械系统与振动国家重点实验室 上海 200240;
    3. 上海航天设备制造总厂 上海 200245
  • 收稿日期:2024-12-10 修回日期:2025-03-05 发布日期:2025-11-08
  • 作者简介:宋强,男,2001年出生,博士研究生。主要研究方向为电阻点焊质量监测。E-mail:swxg-q@sjtu.edu.cn;夏裕俊(通信作者),男,1991年出生,博士,助理教授。主要研究方向为焊接过程实时感知与智能监控。E-mail:xyjdbgt6509@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB4707100)和中国航天科技集团公司第八研究院产学研合作基金(USCAST2023-32)资助项目

Research and Improvement of the Generalization Performance of Spot Welding Quality Diagnosis Model

SONG Qiang1,2, WANG Wenjie1,2,3, HE Xiaobin3, XIA Yujun1,2, LI Yongbing1,2   

  1. 1. Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240;
    2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240;
    3. Shanghai Aerospace Equipment Manufacturing Plant, Shanghai 200245
  • Received:2024-12-10 Revised:2025-03-05 Published:2025-11-08

摘要: 电阻点焊是薄壁结构制造的核心基础工艺,利用焊中传感信号实现点焊质量在线诊断是保障产品可靠性、推动制造模式转型升级的重要途径。然而,大批量生产中的装配偏差会导致焊接工况随机波动,影响接头成形质量,如何提高点焊质量诊断模型由正常工况向异常工况的外推泛化能力,是提升在线检测可靠性的关键。建立多种工况下的点焊质量与多传感信号数据集,提出一种基于自编码器结构和域对抗训练的传感信号特征提取方法。通过自编码器将时序过程信号压缩为高维特征空间中的特征向量,并结合注意力机制,自适应挖掘过程信号中的关键时间步信息,显著增强了特征表达能力。通过域对抗训练缩小不同工况下信号特征的分布差异,提高了跨工况质量诊断精度。分别采用正常工况和异常工况下的数据集作为训练和测试样本,对比所提出的新方法和人工方法以及三种常用的特征提取算法(PCA、Isomap、LLE)在焊点质量诊断任务上的工况泛化效果。结果表明,与其余四种方法相比,新方法在异常工况测试集上的焊点质量诊断准确率从83.18%提升至93.64%,熔核直径预测的均方根误差减小近37.5%,可有效提高质量诊断模型对分布外数据的外推泛化能力。

关键词: 电阻点焊, 质量在线诊断, 注意力机制, 域对抗网络, 分布外泛化

Abstract: Resistance spot welding (RSW) is a fundamental process in thin-walled structure manufacturing. Utilizing process signals during welding to achieve online quality diagnosis of the welds is a crucial approach to ensuring product reliability and advancing the transformation and upgrade of manufacturing modes. However, assembly deviations in mass production can lead to random fluctuations in welding conditions, impacting the quality of joint formation. Enhancing the generalization ability of the quality diagnosis model from normal conditions to abnormal ones is the key to improving the reliability of online detection. In this paper, a dataset of weld quality label under various conditions and multi-sensor signal data is established. A feature extraction method for sensor signals based on an autoencoder and domain adversarial training is proposed. The process signal is compressed into a feature vector in a high-dimensional feature space through the autoencoder, and the extraction of features with strong expressive ability is realized by combining the attention mechanism. Domain adversarial training is then utilized to reduce distributional differences in signal features across different conditions, thereby improving cross-condition quality diagnosis accuracy. Data from normal and abnormal welding conditions are used as training and test samples, respectively, to compare the generalization performance of the proposed method against manual methods and three commonly used feature extraction algorithms(PCA, Isomap, and LLE)in the task of spot weld quality diagnosis. Results show that the proposed method improves quality diagnosis accuracy in the abnormal condition test set from 83.18% to 93.64%. The root mean square error (RMSE) for nugget diameter prediction is reduced by nearly 0.33 mm compared the other four methods, effectively enhancing the generalization ability of the quality diagnosis model for out-of-distribution data.

Key words: resistance spot welding, online quality diagnosis, attention mechanism, domain adversarial network, out-of-distribution generalization

中图分类号: