• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 360-370.doi: 10.3901/JME.2025.17.360

• 制造工艺与装备 • 上一篇    

扫码分享

蜗杆砂轮磨齿齿面柔性拓扑修形加工及精度控制方法

韩江1,2, 蒋泓3, 陆义国1,2, 田晓青1,2, 夏链1,2   

  1. 1. 合肥工业大学机械工程学院 合肥 230009;
    2. 合肥工业大学安徽省智能数控技术及装备工程实验室 合肥 230009;
    3. 安微理工大学人工智能学院 淮南 232000
  • 收稿日期:2024-09-20 修回日期:2025-02-18 发布日期:2025-10-24
  • 作者简介:韩江,男,1963年出生,教授,博士研究生导师。主要研究方向为智能数控技术与高端数控机床、齿轮加工数控系统及装备、智能制造装备、机器人、增材制造。E-mail:hanjiang626@126.com;田晓青,女,1987年出生,教授,博士研究生导师。主要研究方向为智能数控技术与数控机床、齿轮加工数控系统与装备、增材制造。E-mail:tianxiaoqing@hfut.edu.cn;夏链(通信作者),女,1964年出生。主要研究方向为齿轮精密制造技术、智能制造技术与装备、CAD/CAM。E-mail:xialian@hfut.edu.cn
  • 基金资助:
    国家自然科学基金企业创新联合基金(U22B2084)和国家自然科学基金(52275483)资助项目。

Flexible Machining and Precision Control Method of Tooth Flank Topological Modification for Worm Wheel Gear Grinding

HAN Jiang1,2, JIANG Hong3, LU Yiguo1,2, TIAN Xiaoqing1,2, XIA Lian1,2   

  1. 1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009;
    2. Anhui Engineering Laboratory of Intelligent CNC Technology and Equipment, Hefei University of Technology, Hefei 230009;
    3. School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232000
  • Received:2024-09-20 Revised:2025-02-18 Published:2025-10-24

摘要: 为了提高齿轮传动性能,高精度齿轮普遍需要对齿面进行修形,蜗杆砂轮磨齿是硬齿面精加工的重要工艺,是目前齿面修形的主要方法。主流磨齿机床在进行齿面拓扑修形时通常需要根据目标齿面定制相应廓形的金刚滚轮,导致齿轮生产周期延长,成本增加且精度不易保证。为了解决上述问题,提出一种基于柔性电子齿轮箱的蜗杆砂轮磨齿齿面拓扑修形方法,并且实现修形精度控制。首先,根据渐开线齿面成形原理及齿面拓扑修形曲线分别建立了标准渐开线齿面和齿形、齿向双鼓形修形齿面数学模型;其次,运用运动学逆解方法,推导了拓扑修形齿面对应的机床各运动轴的附加运动量。由于蜗杆砂轮数控磨齿机在加工时的运动轴联动控制是由电子齿轮箱实现的,提出将修形附加运动量添加至电子齿轮箱控制模型中。最后,进行齿面修形数值仿真,通过两个数值仿真实例比较传统修形方法与基于柔性电子齿轮箱的齿面修形方法得到的齿面偏差,结果表明,该方法能够有效提高蜗杆砂磨齿的齿面拓扑修形精度。

关键词: 蜗杆砂轮磨齿, 拓扑修形, 电子齿轮箱, 斜齿轮

Abstract: In order to solve the problem of tooth flank accuracy error that exists when grinding helical gears with worm wheel for topological modification, a topological modification method based on flexible electronic gearbox is proposed. First of all, according to the forming principle of involute tooth flank and topological modification curve, the mathematical models of standard involute tooth flank and double drum modification tooth flank are established. Secondly, the kinematic inverse solution method is applied to derive the additional motions of each axis corresponding to the topological modification tooth flank. Since the multi-axis linkage synchronization control of machine tool in the process of generating gear grinding is realized by the control of electronic gearbox, the additional motion amount is proposed to be added in the control model of electronic gearbox. Finally, numerical simulation of tooth flank modification is carried out to compare the tooth flank deviation obtained by traditional modification method and the tooth flank modification method based on flexible electronic gearbox through two numerical simulation examples. The results show that this method can effectively improve the tooth flank modification accuracy of gear grinding with worm wheel.

Key words: worm wheel gear grinding, topographical modification, electronic gearbox, helical gear

中图分类号: