• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 204-216.doi: 10.3901/JME.2025.16.204

• 运载工程 • 上一篇    

扫码分享

基于内模控制框架的机电复合传动系统扭转振动抑制策略

刘辉1,2, 杨殿钊1, 高普1,2, 张伟3, 焦佳新1, 严琦1, 关双元1, 项昌乐1,2   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京理工合肥无人智能装备研究院 合肥 230041;
    3. 湘潭大学机械工程与力学学院 湘潭 411105
  • 接受日期:2024-08-25 出版日期:2025-03-20 发布日期:2025-03-20
  • 作者简介:刘辉,女,1975年出生,博士,教授,博士研究生导师。主要研究方向为车辆动力学和机电传动。E-mail:lh@bit.edu.cn;高普(通信作者),男,1989年出生,博士,副研究员,硕士研究生导师。主要研究方向为车辆动力学和机电传动。E-mail:gaopu1989@126.com
  • 基金资助:
    国家自然科学基金(52130512,52205086和52405071)、北京市科技新星计划(20230484262)、VTDP(DLZX202304,202302329249)、重点实验室稳定支持(202320301483)和XSQD-6120220098资助项目

Internal Model Control Framework-based Torsional Vibration Suppression Strategy for Electro-mechanical Transmission

LIU Hui1,2, YANG Dianzhao1, GAO Pu1,2, ZHANG Wei3, JIAO Jiaxin1, YAN Qi1, GUAN Shuangyuan1, XIANG Changle1,2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. B&H Unmanned Intelligent System Research Institute, Beijing Institute of Technology, Hefei 230041;
    3. School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105
  • Accepted:2024-08-25 Online:2025-03-20 Published:2025-03-20

摘要: 机电复合传动系统(Electro-mechanical transmission,EMT)是一种将电驱动系统和传动系统集成于一体的复杂系统,其特性在特殊工况下会迅速恶化,该问题可通过主动扭振抑制策略有效解决。然而,大多减振策略基于过度简化的模型开展,导致其与实际场景的匹配性差。另外, 大多控制策略在改善振动情况时易造成响应延迟问题。为改善上述问题,搭建了EMT27自由度扭转振动模型,提出一种基于模态贡献评价和刚度灵敏度分析的模型降阶方法,实现将模型由27个自由度降阶至5个自由度且使0~100 Hz模型相似度高达99.89%的效果。针对扭振强抑制与响应小延迟的固有矛盾问题,探究驱动转矩激发EMT扭振的机理,优化驱动转矩频域中的主频和能量分布,设计干扰至半轴转矩的理想传递特性,最终基于降阶模型提出一种的EMT扭振抑制内模控制策略(Internal model control-based torsional vibration suppression,IMC-TVS)。经仿真与试验验证,IMC-TVS相比PID和线性二次型调节器在扭振抑制方面具有较好的先进性和实时性。

关键词: 履带车辆, 机电复合传动系统, 扭转振动, 模型降阶, 内模控制

Abstract: Electro-mechanical transmission(EMT) integrates electric drives with transmission systems, yet they face rapid performance degradation under specific conditions, which can be addressed with active torsional vibration suppression. Traditional damping strategies, often based on simplified models, poorly match real-world scenarios and result in sluggish dynamic responses. To improve this, a 27-DOF torsional vibration model of EMT is developed, and a reduction method using modal contribution and stiffness sensitivity analysis is applied, effectively reducing the model to 5 DOFs while preserving 99.89% similarity in the 0-100 Hz range. Addressing the trade-off between strong vibration suppression and low response delay, the mechanism by which the driving torque excites torsional vibrations in the EMT is investigated. The dominant frequency and energy distribution of the driving torque in the frequency domain are optimized. The ideal transfer characteristics from disturbance to half-shaft torque are designed. Finally, based on the reduced-order model, an internal model control-based torsional vibration suppression(IMC-TVS) strategy for EMT was proposed. Simulation and experimental validations show that the IMC-TVS strategy has better advanced performance and real-time capability in torsional vibration suppression compared to PID and linear quadratic regulator(LQR) controllers.

Key words: tracked vehicle, electro-mechanical transmission, torsional vibration, model order reduction, internal model control

中图分类号: