• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 28-39.doi: 10.3901/JME.2025.16.028

• 仪器科学与技术 • 上一篇    

扫码分享

基于精细复合缩放多尺度加权排列熵的跨域故障诊断方法

肖 扬1, 王华庆1, 李华2, 王庆锋1   

  1. 1. 北京化工大学高端压缩机及系统技术全国重点实验室 北京 100029;
    2. 国家管网集团研究总院 廊坊 065000
  • 接受日期:2024-09-03 出版日期:2025-03-09 发布日期:2025-03-09
  • 作者简介:肖扬,男,1998年出生,博士研究生。主要研究方向为旋转机械预测与健康管理。E-mail:xiao0619yang@163.com;王庆锋(通信作者),男,1972年出生,教授。主要研究方向为设备动态监测、诊断与维护,设备预测与健康管理,机械密封性能退化检测与评价,过程装备可靠性工程。E-mail:wangqf2422@buct.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFF0612701, 2023YFC3010504)和国家管网集团研究总院科学研究与技术开发(CLZB202202)资助项目

Cross-domain Fault Diagnosis Method Based on Refined Composite Zoom Multi-scale Weighted Permutation Entropy

XIAO Yang1, WANG Huaqing1, LI Hua2, WANG Qingfeng1   

  1. 1. State Key Laboratory of High-end Compressor and System Technology, Beijing University of Chemical Technology, Beijing 100029;
    2. PipeChina Institute of Science and Technology, Langfang 065000
  • Accepted:2024-09-03 Online:2025-03-09 Published:2025-03-09

摘要: 离心压缩机、蒸汽轮机、烟气轮机等大型旋转机械是石油化工企业的核心动力设备,实现设备常见典型故障的智能诊断对于开展智能运维至关重要。针对旋转机械跨域迁移诊断中存在早期微弱故障提取难、抗噪声干扰性能弱、不同故障状态信号特征易混淆以及跨工况数据共性特征学习性能低的难题,研究构建一种有效获取全频带范围微小振荡模式的精细复合缩放多尺度加权排列熵指标,并提出一种旋转机械跨域故障迁移诊断方法。首先,对多源典型故障数据库中原始振动信号分解、筛选和重构并提取其敏感共性特征;其次,采用多核孪生集成特征学习策略不断迭代提升模型对转子不平衡、轴系不对中、动静碰摩、油膜涡动和喘振五类源域故障特征的学习分类性能;然后,利用半监督流形特征迁移策略缩小目标域和源域特征分布差异,并通过强分类器映射匹配故障类别标签;最后,基于真实工程故障案例数据验证了该方法的有效性,并与文献公开的五类熵特征和六种故障诊断方法进行对比,表明所提方法对不同设备多工况条件下的跨域故障具有更优越的诊断性能。

关键词: 精细复合缩放多尺度加权排列熵, 旋转机械, 跨域故障诊断, 多核孪生集成特征学习, 半监督流形特征迁移

Abstract: Centrifugal compressors, steam turbines, and flue gas turbines, among other large rotating machinery, are core power equipment in the petrochemical enterprises. Intelligent diagnosis of common typical equipment faults is crucial for carrying out intelligent operation and maintenance. To address challenges such as the difficulty in extracting early-stage weak faults, poor noise interference resistance, confusion of signal features across different fault states, and low learning performance of common features in cross-condition data, the refined composite zoom multi-scale weighted permutation entropy index has been constructed, which is effective for capturing subtle oscillation patterns across the full frequency band. A method for cross-domain fault transfer diagnosis in rotating machinery is also proposed. Firstly, the method is initiated with the decomposition, filtering, and reconstruction of raw vibration signals from a multi-source typical fault database to extract their sensitive common features. Subsequently, the multi-kernel twin ensemble feature learning strategy is employed to iteratively enhance the model's feature classification performance for five types of source domain faults: rotor unbalance, shaft misalignment, static and dynamic rubbing, oil film whirl, and surge. Then, the semi-supervised manifold feature transfer strategy is used to minimize the differences in feature distributions between the target and source domains, with the strong classifier mapping and matching fault category labels. Finally, the effectiveness of the proposed method is validated using real engineering fault case data and compared against five published entropy features and six fault diagnosis methods from the references, demonstrating superior diagnostic performance of the proposed method under multiple operating conditions for different equipment.

Key words: refined composite zoom multiscale weighted permutation entropy, rotating machinery, cross-domain fault diagnosis, multi-kernel twin ensemble feature learning, semi-supervised manifold feature transfer

中图分类号: