• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 418-428.doi: 10.3901/JME.2025.13.418

• 制造工艺与装备 • 上一篇    

扫码分享

基于边界几何方法的铣削加工仿真

张俊1, 李怡1, 汤伟民1, 葛姝翌1, 郭德敏1, 落海伟2   

  1. 1. 福州大学机械工程及自动化学院 福州 350116;
    2. 首都航天机械有限公司 北京 100076
  • 收稿日期:2024-07-13 修回日期:2025-01-16 发布日期:2025-08-09
  • 作者简介:张俊(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为机械传动、机械系统动力学及机器人化装备。E-mail:zhang_jun@fzu.edu.cn;葛姝翌,女,1992年出生,博士,副教授,硕士研究生导师。主要研究方向为先进制造装备及智能加工技术。E-mail:gsy@fzu.edu.cn
  • 基金资助:
    国家自然科学基金(52375009)和航天科技集团应用创新计划(6230113006)资助项目。

Milling Simulation Based on A Boundary Geometry Method

ZHANG Jun1, LI Yi1, TANG Weimin1, GE Shuyi1, GUO Demin1, LUO Haiwei2   

  1. 1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116;
    2. Capital Aerospace Machinery Co., Ltd., Beijing 100076
  • Received:2024-07-13 Revised:2025-01-16 Published:2025-08-09

摘要: 铣削力和刀具振动的准确建模是铣削加工仿真的关键。在考虑铣削系统非线性动态再生效应的影响下,将刀具振动和刀具跳动引起的刀具位置变化叠加在铣削加工轨迹中,提出了一种仿真铣削加工过程的边界几何方法。该方法以微元线段表征刀齿与工件的实体特征,通过微元线段之间的几何关系识别刀具-工件切削接触区域和计算瞬时未变形切屑厚度,利用刀齿微元切削扫描区域实现工件的材料去除。基于此,使用微元积分法计算铣削力,然后建立铣削系统的动力学方程,并采用四阶Runge-Kutta方法求解刀具振动位移。为了验证仿真模型的可靠性,分别进行了铣削力和刀具振动位移测量试验。试验结果表明,所建立的仿真模型能够准确地预测铣削力和刀具振动位移,且相对误差小于10%,为后续铣削加工数字化研究奠定基础。

关键词: 铣削加工仿真, 边界几何方法, 铣削力, 刀具振动

Abstract: Accurate modeling of milling forces and tool vibrations is crucial for the simulation of milling processes. Taking into account the nonlinear dynamic regenerative effects of the milling system, a boundary geometric method for simulating the milling process is proposed by superimposing the changes in tool position caused by tool vibrations and tool runout onto the milling trajectory. The physical features of the tool teeth and workpiece can be characterized with the micro segments, in which the identification of the tool-workpiece cutting contact area and calculation of the instantaneous undeformed chip thickness can be obtained through the geometric relationships between these micro segments. And the material removal from the workpiece is accordingly achieved by scanning the cutting area with the tool teeth micro segments. On this basis, the micro-element integral method is used to calculate the milling forces, and then the dynamic equation of the milling system is established, with the tool vibration displacements solved using the fourth-order Runge-Kutta method. To verify the reliability of the simulation model, experiments are conducted to measure the milling forces and tool vibration displacements. The experimental results show that the milling force and tool vibration displacements can be accurately predicted by the established simulation model, with relative errors of less than 10%, thereby laying a foundation for subsequent digital research on milling processes.

Key words: milling simulation, boundary geometric method, milling force, tool vibration

中图分类号: