• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 158-173.doi: 10.3901/JME.2025.13.158

• 特邀专栏:价值链协同赋能的复杂制造系统:趋势、技术与挑战 • 上一篇    

扫码分享

基于协同质量流图的核电建造质量形成表征方法

易茜, 王鹤翔, 徐梦宇, 刘杰强, 易树平   

  1. 重庆大学机械与运载工程学院 重庆 400044
  • 收稿日期:2024-06-30 修回日期:2025-01-20 发布日期:2025-08-09
  • 作者简介:易茜(通信作者),女, 1986 年出生,博士,副教授,硕士研究生导师。主要研究方向为绿色智能制造、制造系统与质量工程。E-mail: yiqian@cqu.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB1711700)和重庆市自然科学基金(CSTB2023NSCQ-MSX0390)资助项目。

A Characterization Method for Quality Formation of Nuclear Power Equipment Based on Collaborative Quality Flow Diagram

YI Qian, WANG Hexiang, XU Mengyu, LIU Jieqiang, YI Shuping   

  1. College of Mechanical and Transportation Engineering, Chongqing University, Chongqing 400044
  • Received:2024-06-30 Revised:2025-01-20 Published:2025-08-09

摘要: 核电装备在跨企业协同智能建造环境下产生海量数据,其质量形成过程难以“清晰可溯”,为此提出一种基于协同质量流图的质量形成表征方法。分析核电智能建造下协同质量管控的特点,提出一种将质量数据知识化的方法,定义“协同质量元”数据模型与“协同质量流图”,据此获取与组织质量知识。建立质量知识三元组结构,基于改进骨架法构建协同质量流图的业务层本体模型,提出BFAC模型对质量文本非结构化数据进行质量实例抽取,并基于R2RML方法对业务平台中的结构化数据进行知识映射,完成业务层本体的实例化知识填充,并利用Neo4j图数据库融合存储质量知识,构建协同质量流图。用协同质量流图对核电建造质量形成解析,能够对所关注点的质量形成进行可视化表征,并跨平台传递质量形成信息。从施工管理系统、不符合项系统等业务平台收集某核电站安全壳焊接施工中的结构化及非结构化数据构建钢衬里焊接协同质量流图,展示了所关注点的质量形成信息可视化表征与跨平台传递应用,效果良好。所提出的协同质量流图可为以核电装备为代表的复杂产品在质量形成、演化及追溯等的表征上提供一种参考方法。

关键词: 核电建造质量形成, 协同质量流图, 质量数据知识化, 智能建造

Abstract: Nuclear power equipment generates massive data in the cross-enterprise collaborative intelligent construction environment, and its quality formation process is difficult to be "clear and traceable". Therefore, a quality formation characterization method based on a collaborative quality flow diagram is proposed. Firstly, the characteristics of collaborative quality control under intelligent construction of nuclear power are analyzed, and an approach of knowledge-based quality data is presented. The data model of "collaborative quality element" and "collaborative quality flow diagram" are defined to obtain and organize quality knowledge. Next, the triple structure of quality knowledge is established, and the business layer ontology model of collaborative quality flow diagram is constructed based on the improved skeleton method. The BFAC model is proposed to extract quality instances from unstructured data of quality text, and the knowledge mapping of structured data in the business platform is carried out based on the R2RML method to complete the instantiation knowledge filling of business layer ontology. Then, the Neo4j graph database is used to integrate and store quality knowledge to construct the collaborative quality flow diagram. The collaborative quality flow diagram is used to analyze the quality formation of nuclear power construction, which can visually characterize the quality formation of the concerned points, and transmit the quality formation information across platforms. Finally, the structured and unstructured data in the welding construction of a nuclear power plant containment are collected from the construction management system, non-conformity system, and other business platforms, to construct the collaborative quality flow diagram of steel lining welding, which demonstrated the visual representation of quality formation information and cross-platform transfer application of the concerned points, with good results. The proposed collaborative quality flow diagram provides a reference method for the characterization of quality formation, evolution, and traceability of complex products represented by nuclear power equipment.

Key words: quality formation of nuclear power construction, collaborative quality flow diagram, quality data intellectualization, intelligent construction

中图分类号: