• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 89-100.doi: 10.3901/JME.2025.09.089

• 特邀专栏:高性能制造 • 上一篇    

扫码分享

激光增材制造筒段内筋结构熔池热动力学行为

石新宇1,2, 历彦泽1,2, 陈铭源1,2, 顾冬冬1,2   

  1. 1. 南京航空航天大学材料科学与技术学院 南京 210016;
    2. 南京航空航天大学江苏省高性能构件激光增材制造工程实验室 南京 210016
  • 收稿日期:2024-06-06 修回日期:2024-10-10 发布日期:2025-06-12
  • 通讯作者: 顾冬冬,男,1980年出生,博士,教授,博士研究生导师。主要研究方向为高性能构件激光增材制造。E-mail:dongdonggu@nuaa.edu.cn E-mail:dongdonggu@nuaa.edu.cn
  • 作者简介:石新宇,男,1995年出生,博士研究生。主要研究方向为高性能金属构件激光增材制造。E-mail:sx1806074@nuaa.edu.cn
  • 基金资助:
    国家杰出青年科学基金(52225503)和江苏省重点研发计划(BE2022069,BE2022069-1)资助项目。

Thermodynamic Behavior within Melt Pool of LDED Fabricated Stiffener on Cylinder Inner Wall

SHI Xinyu1,2, LI Yanze1,2, CHEN Mingyuan1,2, GU Dongdong1,2   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
  • Received:2024-06-06 Revised:2024-10-10 Published:2025-06-12

摘要: 航空航天领域中筒体构件内部加强筋结构的设计与制造可为其实现轻量化及力学性能提升,结合内壁激光增材制造的复合制造技术能有效实现筒段内部复杂筋体结构成形及高度方向尺寸拓展。本研究通过激光增材沉积AlMgScZr合金,在径向上对旋压成形的2219铝合金筒体内筋实现了增高,并开展了熔池热力学行为仿真分析与实验验证,研究了在倾斜筋体表面上的沉积过程中,工艺参数对熔池温度场、速度场、三维尺寸的影响规律,揭示了激光能量输入、入射粉流和热力学边界条件与熔体运动及熔池表面形貌演变的作用机制。当激光功率由1 000 W增至1 600 W时,熔池三维尺寸定量(长1.298 mm、宽1.580 mm和深0.091 mm)持续增加至(长3.856 mm、宽3.556 mm和深0.725 mm)熔池长度增加27.18%(3.856 mm);随传热方式转变及质量输入减小,沉积增长率逐渐减小(由60.92%减至27.14%)。熔体运动行为受马兰戈尼力与入射粉末冲击力的共同作用,长度方向质量输入作用于熔池前端,熔体向后运动;宽度方向上引起熔体回流。沉积方向上,熔池下半区表面熔体速率为0.021m/s且矢量为负,熔池表面凹陷;上半区表面速度分矢量为正(0.005 7 m/s),熔池表面凸起,沉积材料在上半区偏聚。随基体表面倾角增大,激光能量密度下降,在倾角为30°时熔体热动力情况达到较为稳定的平衡状态;增加至45°时能量密度过低,熔体流动性降低,沉积效率与成形性降低。

关键词: 激光定向能量沉积, 斜面基体, 模拟仿真, 熔池形貌, 熔体运动行为

Abstract: In aeronautics and astronautics manufacturing, the design and manufacture of stiffener structures on the cylinder internal wall is widely applied in the improvement of mechanical properties and lightweight design. The hybrid manufacturing method applied inner-wall laser additive manufacturing can effectively form complex internal rib structures and expand their dimensions in the height direction. This study applied the laser additive deposition of AlMgScZr alloy, which enhances the radial rib height of a spun-formed 2219 aluminum alloy cylinder. The thermodynamic behavior simulation analysis and experimental validation of the melt pool are developed. The study investigates the influence of process parameters on the melt pool temperature field, velocity field, and three-dimensional dimensions. The mechanisms of laser energy input, incident powder flow, and thermodynamic boundary conditions on melt movement and melt pool surface morphology evolution is revealed. When the laser power increased from 1000W to 1 600 W, the three-dimensional shape of the melt pool increased quantitatively (length from 1.298 mm to 3.856 mm, width from 1.580 mm to 3.556 mm, and depth from 0.091 mm to 0.725 mm), with the melt pool length increasing by 27.18% (3.856 mm). As the heat transfer mode changes and mass input decreases, the deposition growth rate gradually decreases (from 60.92% to 27.14%). The behavior of the melt is influenced by the combined effects of Marangoni forces and the impact force of the powder. In the length direction, mass input acts on the frontier of the melt pool, causing the melt to move backward; in the width direction, it causes melt reflux. In the deposition direction, the surface melt rate of the lower half of the melt pool is 0.021 m/s and is negative, resulting in a concave surface. The surface velocity vector of the upper half is positive (0.005 7 m/s), leading to a convex surface, with deposited material concentrated on the upper side. As the substrate surface inclination increases, the laser energy density decreases. At an inclination of 30°, the thermal and dynamic conditions of the melt are in a relatively stable equilibrium state; when increased to 45°, the energy density becomes too low, reducing melt flowability, deposition efficiency, and formability.

Key words: laser directed energy deposition, inclined substrate, simulation, melt pool morphology, melt movement behavior

中图分类号: