• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (8): 384-398.doi: 10.3901/JME.2025.08.384

• 交叉与前沿 • 上一篇    

扫码分享

基于数字孪生的复杂产品装配物料过程齐套时间预测

朱海华1, 付泰然1, 李霏2, 刘长春1, 蔡祺祥1, 唐敦兵1   

  1. 1. 南京航空航天大学机电学院 南京 210016;
    2. 北京电子工程总体研究所 北京 100854
  • 收稿日期:2024-04-22 修回日期:2024-12-11 发布日期:2025-05-10
  • 作者简介:朱海华(通信作者),男,1985年出生,博士,副教授,硕士研究生导师。主要研究方向为网络协同制造、大数据分析。E-mail:h.zhu@nuaa.edu.cn;付泰然,男,2000年出生。主要研究方向为数字孪生车间技术。E-mail:ftr258@nuaa.edu.cn;李霏,男,1983年出生,博士。主要研究方向为数字化设计制造。E-mail:leafy777@qq.com;刘长春,男,1995年出生,博士研究生。主要研究方向为增强现实、物联制造车间的智能运维和工业大数据。E-mail:651979759@qq.com;蔡祺祥,男,1984年出生,博士。主要研究方向为智能制造系统。E-mail:cqx@nuaa.edu.cn;唐敦兵,男,1972年出生,博士,教授,博士研究生导师。主要研究方向为智能制造系统、制造系统与自动化、数字化设计与制造。E-mail:d.tang@nuaa.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB1716304)、江苏省卓越博士后计划 (2024ZB194)、中国博士后科学基金第75批面上(2024M754122)、国家资助博士后研究人员计划(GZB20240972)、江苏省自然科学基金(BK20241389)和江苏高校“青蓝工程”资助项目。

Prediction of Process-level Kitting Time of Assembly Materials for Complex Products Based on Digital Twin

ZHU Haihua1, FU Tairan1, LI Fei2, LIU Changchun1, CAI Qixiang1, TANG Dunbing1   

  1. 1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. Beijing Institute of Electronic System Engineering, Beijing 100854)
  • Received:2024-04-22 Revised:2024-12-11 Published:2025-05-10

摘要: 物料齐套是复杂产品装配过程高效有序开展的重要保障和先决条件。随着装配车间数字化网络化能力不断攀升,传统的装配过程物料齐套模式由产品级齐套向工序级齐套转变,这一转变对物料需求预测准确性提出了更高的要求。由于装配过程涉及大量人工操作,且经常出现研制型号与批产型号混流共线的情况,导致传统仿真手段难以预计工序完工时间,进而影响物料需求预测。为更好地支撑装配过程生产调度,保障多品种、小批量复杂产品装配任务有序进行,以某防空导弹复杂产品为典型对象,提出一种基于数字孪生的防空导弹产品装配物料过程齐套时间预测方法。构建面向复杂产品装配过程的数字孪生模型,为装配过程物料齐套各阶段任务耗时提供仿真环境;以齐套过程仿真结果数据为基础,结合装配任务实时生产数据,设计物料过程齐套时间预测算法模型,通过历史生产特征数据捕捉车间状态与人工效率的关系,提升待执行工序物料齐套时间的预测精度;最后,以某防空导弹装配车间为对象进行应用示范,验证所提方法的有效性。

关键词: 物料齐套时间, 数字孪生车间, 虚拟仿真, 预测模型, 装配车间

Abstract: Material kitting is an important guarantee and prerequisite for the efficient and orderly conduct of the assembly process of complex products. With the continuous improvement of digital and network capabilities in assembly workshops, the traditional material kitting mode in assembly processes is undergoing a shift from product-level kitting to process-level kitting. This shift poses higher demands for the accuracy of material demand forecasting. Due to the extensive manual operations involved in the assembly process, and the frequent occurrence of mixed-flow co-linearity between developmental models and batch production models, traditional simulation methods face challenges in predicting process completion times, consequently impacting material demand forecasting. To better support production scheduling in the assembly process and ensure the orderly execution of complex assembly tasks involving multiple varieties and small batches, a method for predicting the process-level kitting time of assembly materials for a specific type of anti-aircraft missile complex product based on digital twins is proposed. This involves constructing a digital twin model tailored to the assembly process of complex products, providing a simulation environment for the time consumption of tasks in each stage of the assembly kitting process. Based on the simulation results data of the assembly kitting process and combined with real-time production data of assembly tasks, design a material process kitting time prediction algorithm model. By capturing the relationship between workshop status and manual efficiency through historical production feature data, enhance the accuracy of predicting the kitting time for pending assembly tasks. Finally, an application demonstration is conducted in a specific anti-aircraft missile assembly workshop to validate the effectiveness of the proposed method.

Key words: material kitting time, digital twin workshop, virtual simulation, prediction model, assembly workshop

中图分类号: