机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 75-103.doi: 10.3901/JME.2024.24.075
付佳伟1, 蔡亚辉1, 李霓2, 齐乐华1
收稿日期:
2023-11-22
修回日期:
2024-09-30
出版日期:
2024-12-20
发布日期:
2025-02-01
作者简介:
付佳伟(通信作者),男,1983年出生,博士,研究员,博士研究生导师。主要研究方向为轻质金属及其复合材料与结构的制造、控性与先进测试技术。E-mail: jiawei.fu@nwpu.edu.cn;李霓,女,1986年出生,博士,教授,博士研究生导师。主要研究方向为飞行器智能感知、决策与控制,飞行器集群智能优化与控制。E-mail: lini@nwpu.edu.cn
基金资助:
FU Jiawei1, CAI Yahui1, LI Ni2, QI Lehua1
Received:
2023-11-22
Revised:
2024-09-30
Online:
2024-12-20
Published:
2025-02-01
摘要: 高温、冲击复杂载荷条件下材料结构的热-力耦合行为关系着高超声速飞行器等航空航天关键装备的结构安全和服役寿命,如何实现材料结构复杂热-力学属性的准确表征,一直以来受到业界学者们的高度关注。当前,国内外已发展出众多热-力学属性试验测试技术和表征方法,相关研究成果为关键部件的选材、结构设计、安全校核和行为预测提供了重要技术支撑。概述了航空航天装备材料结构在冲击、高温极端条件下的热-力学响应,系统总结了基于均匀状态假设的经典动态/高温力学属性测试方法技术特点和应用范围,就目前快速发展的多种全场测量技术、高速成像技术和参数反演识别方法进行了综述,着重阐述了基于全场测量数据的反演识别方法在材料动态/高温力学属性表征方面的应用现状,并给出材料属性参数表征在航空航天装备部件极端工况力学行为模拟预测和结构改进方面的应用实例,最后对多场耦合条件下材料热-力学属性先进测试表征方法的未来发展趋势进行展望。
中图分类号:
付佳伟, 蔡亚辉, 李霓, 齐乐华. 面向航空航天复杂载荷条件的材料热-力学属性表征方法研究进展[J]. 机械工程学报, 2024, 60(24): 75-103.
FU Jiawei, CAI Yahui, LI Ni, QI Lehua. Research Progress on Characterization Methods for Thermal-mechanical Properties of Materials under Complex Loading Conditions in Aeronautic and Astronautic Engineering[J]. Journal of Mechanical Engineering, 2024, 60(24): 75-103.
[1] ZHANG S,LI X,ZUO J,et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences,2020,119:100646. [2] ZHU Y,PENG W,XU R,et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics,2018,31(10):1929-1953. [3] 姜洪开,邵海东,李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报,2019,55(7):27-34. JIANG Hongkai,SHAO Haidong,LI Xingqiu. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering,2019,55(7):27-34. [4] 邹学锋,潘凯,燕群,等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术,2020,31(12):3-15. ZOU Xuefeng,PAN Kai,YAN Qun,et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Technology,2020,31(12):3-15. [5] 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报,2022,43(6):8-27. SUN Cong. Development status,challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):8-27. [6] 方进秀,张兴权,王会廷,等. 5052铝合金的动态拉伸性能及其本构模型[J]. 机械工程学报,2022,58(8):160-169. FANG Jinxiu,ZHANG Xingquan,WANG Huiting,et al. Dynamic tensile properties and constitutive model of 5052 aluminum alloy[J]. Journal of Mechanical Engineering,2022,58(8):160-169. [7] 高希光,韩栋,宋迎东,等. 陶瓷基复合材料结构的动力学强度设计方法:研究现状及展望[J]. 机械工程学报,2021,57(16):235-247. GAO Xiguang,HAN Dong,SONG Yingdong,et al. Dynamic strength design methods of ceramic matrix composite structures:Current status and future prospects[J]. Journal of Mechanical Engineering,2021,57(16):235-247. [8] MARTINS J M P,ANDRADE-CAMPOS A,THUILLIER S. Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements[J]. International Journal of Mechanical Sciences,2018,145:330-345. [9] 吴大方,王岳武,高镇同,等. 1500℃高温氧化环境下C/SiC复合材料结构的热/力联合试验[J]. 复合材料学报,2015,32(4):1083-1091. WU Dafang,WANG Yuewu,GAO Zhentong,et al. Thermal-mechanical joint test of C/SiC composite structure in high-temperature/oxidation environment up to 1500℃[J]. Acta Materiae Compositae Sinica,2015,32(4):1083-1091. [10] OHIGGINS R M,MCCARTHY C T,MCCARTHY M A. Identification of damage and plasticity parameters for continuum damage mechanics modelling of carbon and glass fibre-reinforced composite materials[J]. Strain,2011,47(1):105-115. [11] AVRIL S,BONNET M,BRETELLE A,et al. Overview of identification methods of mechanical parameters based on full-field measurements[J]. Experimental Mechanics,2008,48(4):381-402. [12] HE T R,LIU L,MAKEEV A. Uncertainty analysis in composite material properties characterization using digital image correlation and finite element model updating[J]. Composite Structures,2018,184:337-351. [13] GREDIAC M. Principe des travaux virtuels et identification[J]. Comptes rendus de l'Académie des sciences Série 2,1989,309(1):1-5. GREDIAC M. Principle of virtual work and identification[J]. Proceedings of the Academy of Sciences Series II,1989,309(1):1-5. [14] PIERRON F,GREDIAC M. Towards material testing 2.0. A review of test design for identification of constitutive parameters from full-field measurements[J]. Strain,2021,57(1):e12370. [15] BOLESLAW S,FRITZ B. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system[C]//International Conference on Experimental Mechanics,November 15-17,2014,Singapore:Proceedings of SPIE,2015. [16] KIM J H,PIERRON F,WISNOM M R,et al. Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method[J]. Composites Part a:Applied Science and Manufacturing,2007,38(9):2065-2075. [17] ARCHER T,BERNY M,BEAUCHÊNE P,et al. Creep behavior identification of an environmental barrier coating using full-field measurements[J]. Journal of the European Ceramic Society,2020,40(15):5704-5718. [18] 邓云飞,张永,吴华鹏,等. 6061-T651铝合金动态力学性能及J-C本构模型的修正[J]. 机械工程学报,2020,56(20):74-81. DENG Yunfei,ZHANG Yong,WU Huapeng,et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy[J]. Journal of Mechanical Engineering,2020,56(20):74-81. [19] 常慧,张团卫,王建军,等. 轧态CrCoNi中熵合金动态拉伸本构模型的建立和变形机理研究[J]. 机械工程学报,2022,58(20):350-360. CHANG Hui,ZHANG Tuanwei,WANG Jianjun,et al. Study on dynamic tensile mechanical behavior and deformation mechanisms of CrCoNi medium entropy alloy at room and cryogenic temperature[J]. Journal of Mechanical Engineering,2022,58(20):350-360. [20] 蔡恒君,胡靖帆,宋仁伯,等. 高应变速率条件下1200 MPa级冷轧双相钢塑性变形微观机理的研究[J]. 机械工程学报,2016,52(12):23-29. CAI Hengjun,HU Jingfan,SONG Renbo,et al. Plastic deformation microscopic mechanism of cold rolled dual phase steel DP1200 under high strain rate deformation[J]. Journal of Mechanical Engineering,2016,52(12):23-29. [21] 牟浩蕾,赵一帆,刘义,等. 航空沉头铆钉动态加载试验及失效模式研究[J]. 航空科学技术,2019,30(4):69-78. MOU Haolei,ZHAO Yifan,LIU Yi,et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science & Technology,2019,30(4):69-78. [22] 张超,方鑫,刘建春. 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报,2022,48(4):698-707. ZHANG Chao,FANG Xin,LIU Jianchun. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(4):698-707. [23] 王敏杰,王阳,魏兆成,等. 切削过程绝热剪切带的滑移线场研究[J]. 机械工程学报,2022,58(7):284-294. WANG Mingjie,WANG Yang,WEI Zhaocheng,et al. Slip line field of adiabatic shear band in cutting process[J]. Journal of Mechanical Engineering,2022,58(7):284-294. [24] LI Xianyu,ZHANG Zhaohui,CHENG Xingwang,et al. The evolution of adiabatic shear band in high Co-Ni steel during high strain-rate compression[J]. Materials Science and Engineering:A,2022,858:144173. [25] MCCARTHY M A,XIAO J R,PETRINIC N,et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-part 1:material modelling[J]. Applied Composite Materials,2004,11(5):295-315. [26] LONG S,YAO X,WANG H,et al. A dynamic constitutive model for fiber-reinforced composite under impact loading[J]. International Journal of Mechanical Sciences,2020,166:105226. [27] HOULSBY G T,PUZRIN A M. A thermomechanical framework for constitutive models for rate-independent dissipative materials[J]. International Journal of Plasticity,2000,16(9):1017-1047. [28] HAKANSSON P,WALLIN M,RISTINMAA M. Comparison of isotropic hardening and kinematic hardening in thermoplasticity[J]. International Journal of Plasticity,2005,21(7):1435-1460. [29] JOHNSON G R,COOK W H. Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48. [30] LWANG Y,XING J,ZHOU Y,et al. Tensile properties and a modified s-Johnson-Cook model for constitutive relationship of AA7075 sheets at cryogenic temperatures[J]. Journal of Alloys and Compounds,2023,942:169044. [31] ASHRAFIAN M M,HOSSEINI KORDKHEILI S A. A novel phenomenological constitutive model for ti-6al-4v at high temperature conditions and quasi-static strain rates[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2021,235(13):1831-1842. [32] 王海波,陈正阳,阎昱. 屈服准则对DP600钢板各向异性行为的预测能力[J]. 塑性工程学报,2015,22(2):45-50. WANG Haibo,CHEN Zhengyang,YAN Yu. Capabilities of yield criteria on predicting the anisotropic behaviors of DP600 steel sheet[J]. Journal of Plastic Engineering,2015,22(2):45-50. [33] 孟莹,付秀丽,潘永智,等. 考虑成形方向的航空铝合金修正本构模型的构建[J]. 机械工程学报,2018,54(22):78-85. MENG Ying,FU Xiuli,PAN Yongzhi,et al. Modified Johnson-Cook constitutive model of aerial aluminum alloy 7050-T7415 considering the forming direction effect[J]. Journal of Mechanical Engineering,2018,54(22):78-85. [34] 陈仙风,于忠奇,侯波,等. 直缝焊管液压成形极限理论预测模型[J]. 机械工程学报,2011,47(20):116-120. CHEN Xianfeng,YU Zhongqi,HOU Bo,et al. Prediction model for forming limit of welded tube hydroforming[J]. Journal of Mechanical Engineering,2011,47(20):116-120. [35] 胡虹玲,龚友坤,彭雄奇,等. 考虑拉剪耦合的二维编织物各向异性超弹性本构模型[J]. 复合材料学报,2017,34(6):1388-1393. HU Hongling,GONG Youkun,PENG Xiongqi,et al. An anisotropic hyperelastic constitutive model considering shear-tension coupling for 2-Dimensional woven fabrics[J]. Acta Materiae Compositae Sinica,2017,34(06):1388-1393. [36] 黄小双,姚远,彭雄奇,等. 考虑双拉耦合的复合材料编织物各向异性超弹性本构模型[J]. 复合材料学报,2016,33(10):2319-2324. HUANG Xiaoshuang,YAO Yuan,PENG Xiongqi,et al. Anisotropic hyperelastic constitutive model with biaxial tension coupling for woven fabric composites[J]. Acta Materiae Compositae Sinica,2016,33(10):2319-2324. [37] 李群,辛策,金淼,等. 各向异性非线性随动硬化本构模型的建立及应用[J]. 机械工程学报,2017,53(14):159-164. LI Qun,XIN Ce,JIN Miao,et al. Establishment and application of an anisotropic nonlinear kinematic hardening constitutive model[J]. Journal of Mechanical Engineering,2017,53(14):159-164. [38] QIN Z,ZHU J,LI W,et al. System ringing in impact test triggered by upper-and-lower yield points of materials[J]. International Journal of Impact Engineering,2017,108:295-302. [39] XIA Y,ZHU J,ZHOU Q. Verification of a multiple-machine program for material testing from quasi-static to high strain-rate[J]. International Journal of Impact Engineering,2015,86:284-294. [40] 崔俊佳,董东营,王琼,等. DP780双相钢电阻点焊接头动态载荷下失效行为研究[J]. 机械工程学报,2021,57(2):70-79. CUI Junjia,DONG Dongying,WANG Qiong,et al. Failure behavior analysis of resistance spot welding joints of DP780 dual-phase steel under dynamic load[J]. Journal of Mechanical Engineering,2021,57(2):70-79. [41] SHUBHAM,YERRAMALLI C S,SUMANT C,et al. Finite element modelling and experimentation of plain weave glass/epoxy composites under high strain-rate compression loading for estimation of Johnson-Cook model parameters[J]. International Journal of Impact Engineering,2022,167:104262. [42] LEE S,HUH H. Shear stress hardening curves of AISI 4130 steel at ultra-high strain rates with Taylor impact tests[J]. International Journal of Impact Engineering,2021,149:103789. [43] 白春玉,刘小川,周苏枫,等. 中应变率下材料动态拉伸关键参数测试方法[J]. 爆炸与冲击,2015,35(4):507-512. BAI Chunyu,LIU Xiaochuan,ZHOU Sufeng,et al. Material key parameters measurement method in the dynamic tensile testing at intermediate strain rates[J]. Explosion and Shock Waves,2015,35(4):507-512. [44] ZHU D,RAJAN S D,MOBASHER B,et al. Modal analysis of a servo-hydraulic high speed machine and its application to dynamic tensile testing at an intermediate strain rate[J]. Experimental Mechanics,2011,51(8):1347-1363. [45] RUSINEK A,CHERIGUENE R,BÄUMER A,et al. Dynamic behaviour of high‐strength sheet steel in dynamic tension:experimental and numerical analyses[J]. The Journal of Strain Analysis for Engineering Design,2008,43(1):37-53. [46] 葛宇静,白春玉,惠旭龙,等. 材料中应变率力学性能测试数据处理与表征方法[J]. 测控技术,2022,41(5):58-65. GE Yujing,BAI Chunyu,HUI Xulong,et al. Test data processing and characterization methods for material mechanical properties under intermediate strain rates[J]. Measurement & Control Technology,2022,41(5):58-65. [47] FROUSTEY C,LAMBERT M,CHARLES J L,et al. Design of an impact loading machine based on a flywheel device:application to the fatigue resistance of the high rate pre-straining sensitivity of aluminium alloys[J]. Experimental Mechanics,2007,47(6):709-721. [48] PEROGAMVROS N,MITROPOULOS T,LAMPEAS G. Drop tower adaptation for medium strain rate tensile testing[J]. Experimental Mechanics,2016,56(3):419-436. [49] BHUJANGRAO T,FROUSTEY C,IRIONDO E,et al. Review of intermediate strain rate testing devices[J]. Metals,2020,10(7):894. [50] SERBAN D A,WEBER G,MARŞAVINA L,et al. Tensile properties of semi-crystalline thermoplastic polymers:effects of temperature and strain rates[J]. Polymer Testing,2013,32(2):413-425. [51] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Proceedings of the Royal Society of London. Series a,Containing Papers of a Mathematical and Physical Character,1914,89(612):411-413. [52] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B,1949,62(11):676. [53] ERIC M,BERTRAND L,DELPHINE N. A review of characterisation and parameters identification of materials constitutive and damage models:from normalised direct approach to most advanced inverse problem resolution[J]. International Journal of Impact Engineering,2017,110:371-381. [54] CHEN X,LIU Z,HE G,et al. A novel integrated tension-compression design for a mini split Hopkinson bar apparatus[J]. Review of Scientific Instruments,2014,85(3):35114. [55] SILVA C M A,ROSA P A R,MARTINS P A F. An innovative electromagnetic compressive split Hopkinson bar[J]. International Journal of Mechanics and Materials in Design,2009,5(3):281-288. [56] 李玉龙,聂海亮,汤忠斌,等. 基于电磁力的霍普金森拉压杆应力波发生器及实验方法: 中国, 201410173843.1[P]. 2014-07-16. LI Yulong,NIE Hailiang,TANG Zhongbin,et al. Hopkinson stress wave generator based on electromagnetic force and its experimental method:China,201410173843.1[P]. 2014-07-16. [57] NIE H,SUO T,WU B,et al. A versatile split Hopkinson pressure bar using electromagnetic loading[J]. International Journal of Impact Engineering,2018,116:94-104. [58] 王维斌,索涛,郭亚洲,等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展,2021,51(4):729-754. WANG Weibin,SUO Tao,GUO Yazhou,et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics,2021,51(4):729-754. [59] JIN K,QI L,KANG H,et al. A novel technique to measure the biaxial properties of materials at high strain rates by electromagnetic Hopkinson bar system[J]. International Journal of Impact Engineering,2022,167:104286. [60] REN T,SUO T,MENG Y,et al. On dynamic behavior and failure of high lock bolted joints:testing,analysis and predicting[J]. European Journal of Mechanics a-Solids,2022,96:104681. [61] TAYLOR G I. The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations[J]. Proceedings of the Royal Society of London. Series a. Mathematical and Physical Sciences,1948,194(1038):289-299. [62] LU G,WANG B,ZHANG T. Taylor impact test for ductile porous materials—part 1:theory[J]. International Journal of Impact Engineering,2001,25(10):981-991. [63] 吕剑,何颖波,田常津,等. 泰勒杆实验对材料动态本构参数的确认和优化确定[J]. 爆炸与冲击,2006(4):339-344. LÜ Jian,HE Yingbo,TIAN Changjin,et al. Validation and optimization of dynamic constitutive model constants with Taylor test[J]. Explosion and Shock Waves,2006(4):339-344. [64] CHAKRABORTY S,SHAW A,BANERJEE B. An axisymmetric model for Taylor impact test and estimation of metal plasticity[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2015,471(2174):20140556. [65] SEN S,BANERJEE B,SHAW A. Taylor impact test revisited:determination of plasticity parameters for metals at high strain rate[J]. International Journal of Solids and Structures,2020,193:357-374. [66] FRUTSCHY K J,CLIFTON R J. High-temperature pressure-shear plate impact experiments using pure tungsten carbide impactors[J]. Experimental Mechanics,1998,38(2):116-125. [67] KIM K S,CLIFTON R J. Pressure-shear impact of 6061-T6 aluminum[J]. Journal of Applied Mechanics,1980,47(1):11-16. [68] ABOU-SAYED A S,CLIFTON R J,HERMANN L. The oblique-plate impact experiment[J]. Experimental Mechanics,1976,16(4):127-132. [69] KETTENBEIL C,LOVINGER Z,RAVINDRAN S,et al. Pressure-shear plate impact experiments at high pressures[J]. Journal of Dynamic Behavior of Materials,2020,6(4):489-501. [70] 邹学锋,郭定文,潘凯,等. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报,2018,39(12):240-250. ZOU Xuefeng,GUO Dingwen,PAN Kai,et al. Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J]. Acta Aeronautica et Astronautica Sinica,2018,39(12):240-250. [71] LEE J H,MAHENDRAN M,MAKELAINEN P. Prediction of mechanical properties of light gauge steels at elevated temperatures[J]. Journal of Constructional Steel Research,2003,59(12):1517-1532. [72] LEI J F,CASTELLI M G,ANDROJNA D,et al. Comparison testings between two high-temperature strain measurement systems[J]. Experimental Mechanics,1996,36(4):430-435. [73] SONG J,YANG J,LIU F,et al. High temperature strain measurement method by combining digital image correlation of laser speckle and improved ransac smoothing algorithm[J]. Optics and Lasers in Engineering,2018,111:8-18. [74] GUO X,LIANG J,TANG Z,et al. High-temperature digital image correlation method for full-field deformation measurement captured with filters at 2600℃ using spraying to form speckle patterns[J]. Optical Engineering,2014,53:63101. [75] PAN B,WU D,GAO J. High-temperature strain measurement using active imaging digital image correlation and infrared radiation heating[J]. The Journal of Strain Analysis for Engineering Design,2014,49:224-232. [76] LI X,ZHANG X,HAN J,et al. A technique for ultrahigh temperature oxidation studies of ZrB2-SiC[J]. Materials Letters,2008,62(17):2848-2850. [77] 刘孝亮,陈学东,王冰,等. 高温氢气环境蠕变持久试验装置的试样均温性控制[J]. 焊接学报,2016,37(5):65-68. LIU Xiaolian,CHEN Xuedong,WANG Bing,et al. Temperature uniformity control on specimen of material testing apparatus in hydrogen environment[J]. Transactions of the China Welding Institution,2016,37(5):65-68. [78] LIU X L,CHEN X D,WANG B,et al. Development of new material testing apparatus in hydrogen at elevated temperature[J]. Procedia Engineering,2015,130:1046-1056. [79] CHENG X,QU Z,HE R,et al. An ultra-high temperature testing instrument under oxidation environment up to 1800℃[J]. Review of Scientific Instruments,2016,87(4):45108. [80] 靖旭. 复合动静态机械加载系统设计与试验研究[D]. 长春:吉林大学,2021. JING Xu. Design and experimental research of compound dynamic and static mechanical loading system[D]. Changchun:Jilin University,2021. [81] CAVILLON M,LANCRY M,POUMELLEC B,et al. Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres[J]. Journal of Physics:Photonics,2019,1(4):42001. [82] 刘利强,张显程,谈建平,等. 严苛环境高温力学试验技术研究进展[J]. 机械工程学报,2021,57(16):3-15. LIU Liqiang,ZHANG Xiancheng,TAN Jianping,et al. Research progress of high temperature mechanical test technology in severe environment[J]. Journal of Mechanical Engineering,2021,57(16):3-15. [83] LASHARI G A,MUMTAZ F,AHMED S. Strain sensing with parallel air-cavity fabry-perot interferometers based on vernier effect[J]. Optical Fiber Technology,2022,74:103117. [84] WALLEY S M. The effect of temperature gradients on elastic wave propagation in split Hopkinson pressure bars[J]. Journal of Dynamic Behavior of Materials,2020,6(3):278-286. [85] 李玉龙,索涛,郭伟国,等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统[J]. 爆炸与冲击,2005(6):487-492. LI Yulong,SUO Tao,GUO Weiguo,et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion and Shock Waves,2005(6):487-492. [86] KAJBERG J,SUNDIN K G. Material characterisation using high-temperature split Hopkinson pressure bar[J]. Journal of Materials Processing Technology,2013,213(4):522-531. [87] BACON C,BRUN A. Methodology for a Hopkinson test with a non-uniform viscoelastic bar[J]. International Journal of Impact Engineering,2000,24(3):219-230. [88] KIMM J S,BERGMANN J A,WOSTE F,et al. Deformation behavior of 42CrMo4 over a wide range of temperatures and strain rates in split-Hopkinson pressure bar tests[J]. Materials Science and Engineering:A,2021,826:141953. [89] LI W,CHEN Z,LIU J,et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate[J]. Materials Science and Engineering:A,2017,688:322-329. [90] LE J,HAN Y,QIU P,et al. The impact of matrix texture and whisker orientation on property anisotropy in titanium matrix composites:experimental and computational evaluation[J]. Composites Part B:Engineering,2021,212:108682. [91] YANG S,YANG Y,CHEN Z,et al. Effects of fibrous Cr phase on the adiabatic shearing anisotropic behavior of the Cu-15Cr in-situ composite[J]. Journal of Alloys and Compounds,2022,916:165409. [92] 宁祚良,陈刚,陈旭. 多轴试验测试技术的发展与应用[J]. 机械工程学报,2021,57(16):16-36. NING Zuoliang,CHEN Gang,CHEN Xu. Development and application of multiaxial testing technique[J]. Journal of Mechanical Engineering,2021,57(16):16-36. [93] XIAO R,LI X,LANG L,et al. Forming limit in thermal cruciform biaxial tensile testing of titanium alloy[J]. Journal of Materials Processing Technology,2017,240:354-361. [94] PETERS W H,RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering,1982,21(3):427-431. [95] BAQERSAD J,POOZESH P,NIEZRECKI C,et al. Photogrammetry and optical methods in structural dynamics–a review[J]. Mechanical Systems and Signal Processing,2017,86:17-34. [96] JANELIUKSTIS R,CHEN X. Review of digital image correlation application to large-scale composite structure testing[J]. Composite Structures,2021,271:114143. [97] PAN B. Digital image correlation for surface deformation measurement:historical developments,recent advances and future goals[J]. Measurement Science and Technology,2018,29(8):082001. [98] 梁晋,胡浩,唐正宗,等. 数字图像相关法测量板料成形应变[J]. 机械工程学报,2013,49(10):77-83. LIANG Jin,HU Hao,TANG Zhengzong,et al. Digital image correlation method for strains measurement of metal sheet forming[J]. Journal of Mechanical Engineering,2013,49(10):77-83. [99] PAN B,XIE H,WANG Z. Equivalence of digital image correlation criteria for pattern matching[J]. Applied Optics,2010,49(28):5501-5509. [100] GAO Y,CHENG T,SU Y,et al. High-efficiency and high-accuracy digital image correlation for three-dimensional measurement[J]. Optics and Lasers in Engineering,2015,65:73-80. [101] PAN B,LI K,TONG W. Fast,robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics,2013,53(7):1277-1289. [102] TIAN L,YU L,PAN B. Accuracy enhancement of a video extensometer by real-time error compensation[J]. Optics and Lasers in Engineering,2018,110:272-278. [103] SUTTON M A,YAN J H,TIWARI V,et al. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements[J]. Optics and Lasers in Engineering,2008,46(10):746-757. [104] LUO P F,CHAO Y J,SUTTON M A,et al. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision[J]. Experimental Mechanics,1993,33(2):123-132. |
[1] | 李铭, 谢里阳, 张宇, 白鑫, 胡杰鑫. 齿轮的概率寿命预测与弯曲疲劳试验[J]. 机械工程学报, 2017, 53(18): 169-175. |
[2] | 庄法坤, 涂善东, 周帼彦, 王琼琦. 不同小试样测量蠕变性能的比较研究[J]. 机械工程学报, 2015, 51(6): 9-18. |
[3] | 周亮;姚英学. 纳米压痕硬度尺寸效应分析及其试验研究[J]. , 2006, 42(增刊): 84-88. |
[4] | 弓满锋;乔生儒;卢国锋;姬浩;LYASHENKO B A. 高速钢上TiN涂层残余应力的曲率测试和有限元分析[J]. , 2010, 46(6): 100-106. |
[5] | 白力静;蒋百灵;乔亮;李艳;殷鹏. 磁控溅射微纳米梯度镀层对45钢及40Cr钢弹性变形性能的影响[J]. , 2011, 47(4): 32-36. |
[6] | 刘文艳;胡国清. 陶瓷液压阀的应力计算及分析[J]. , 2000, 36(9): 44-47. |
[7] | 王尤颜;白鸿柏;侯军芳. 金属橡胶材料疲劳损伤性能研究[J]. , 2011, 47(2): 65-71. |
[8] | 赵瑞海;曾攀 陈元柏;唐 晓. 北京谱仪BESIII漂移室中预应力细丝张拉的全过程有限元模拟分析[J]. , 2007, 43(8): 109-113. |
[9] | 杨班权;陈光南;张坤;罗耕星;肖京华. 脆性涂层/韧性基体材料在拉伸应变作用下的开裂行为[J]. , 2008, 44(5): 57-61. |
[10] | 郑卜祥;宋永伦;席峰;张万春;闫志鸿. 对接焊铝合金板材残余应力的X射线测试[J]. , 2009, 45(3): 275-281. |
[11] | 文峰;黄楠;孙鸿;万国江. 等离子浸没离子注入合成TiN/Ti-O梯度薄膜的成分与力学性能[J]. , 2005, 41(3): 155-159. |
[12] | 宋玉泉. 超塑拉伸变形的力学解析[J]. , 2003, 39(10): 64-72. |
[13] | 李宇明;彭威;白鸿柏;郑坚. 金属橡胶材料宏观和细观力学模型[J]. , 2005, 41(9): 38-41. |
[14] | 石世宏;傅戈雁;欧阳八生;彭如恕. 多冲接触载荷下涂层零件低应力宏观塑性行为[J]. , 2005, 41(4): 137-142. |
[15] | 何国求;陈成澍;高庆;孙训方;沈志云. 不锈钢多轴非比例加载低周疲劳的研究[J]. , 1999, 35(1): 47-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||