• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (21): 275-291.doi: 10.3901/JME.2024.21.275

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于多材料3D打印的多层柔性及可拉伸电子一体化制造方法及应用研究

商帅1,2, 杨建军1,2, 孙鹏1,2, 李政豪1,2, 王洛唯1,2, 李红珂1,2, 张厚超1,2, 王瑞1,2, 孙文正1,2, 严小天3, 刘朝红3, 兰红波1,2, 朱晓阳1,2,3   

  1. 1. 青岛理工大学山东省增材制造工程技术研究中心 青岛 266520;
    2. 青岛理工大学山东省增材制造(3D打印)技术与应用高校重点实验室 青岛 266520;
    3. 青岛虚拟现实研究院有限公司 青岛 266100
  • 收稿日期:2023-11-21 修回日期:2024-03-18 发布日期:2024-12-24
  • 通讯作者: 朱晓阳,男,1988年出生,博士,副教授,博士研究生导师。主要研究方向为微尺度3D打印工艺及装备研发、微光学器件的设计与制造、透明导电薄膜以及柔性电子3D打印。E-mail:zhuxiaoyang@qtech.edu.cn
  • 作者简介:商帅,女,1998年出生。主要研究方向为柔性电子3D打印。E-mail:1020449526@qq.com;杨建军,男,1977年出生,博士,教授。主要研究方向为复合材料3D打印、功能梯度3D打印、柔性电子3D打印以及微纳增材制造。E-mail:yjjdem@163.com
  • 基金资助:
    国家自然科学基金资助项目(51875291、52075266)。

Multi-layer Flexible and Stretchable Electronics Integrated Manufacturing Method and Application Research Based on Multi-material 3D Printing

SHANG Shuai1,2, YANG Jianjun1,2, SUN Peng1,2, LI Zhenghao1,2, WANG Luowei1,2, LI Hongke1,2, ZHANG Houchao1,2, WANG Rui1,2, SUN Wenzheng1,2, YAN Xiaotian3, LIU Chaohong3, LAN Hongbo1,2, ZHU Xiaoyang1,2,3   

  1. 1. Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520;
    2. Key Laboratory of Additive Manufacturing (3D Printing) Technology and Application in Shandong Province, Qingdao University of Technology, Qingdao 266520;
    3. Qingdao Virtual Reality Research Institute Co., Ltd., Qingdao 266100
  • Received:2023-11-21 Revised:2024-03-18 Published:2024-12-24

摘要: 针对多层柔性及可拉伸电子现有制造方法存在的工艺复杂、层间电气连接不稳定以及难以高度集成电子组件的问题,提出一种基于多材料3D打印和多喷头协作的多层柔性及可拉伸电子一体化制造方法。通过实验对比和结果分析,揭示了打印速度、打印气压、打印平台温度、喷头内径等关键打印工艺参数对电介质材料层厚度、层内导线、层间互连导线宽度和整体打印质量的显著影响和规律,从而优选出最佳打印参数范围,确保层间互联导线打印直接成型,且垂直互联导线打印高度可达13 mm,从而实现多层电路之间的稳定电连接;利用提出的方法、合理的多层电路布局和优化的工艺参数,采用柔性的PDMS电介质材料和高拉伸率的纳米银浆导电材料打印了具有不同集成密度的多层柔性电路,并进行了相关性能展示。结果表明,该方法为多层柔性及可拉伸电子电路提供了一种全新的多材料一体化制造方案。

关键词: 多层柔性及可拉伸电子, 多材料3D打印, 一体化制造, 垂直互联导线

Abstract: In response to the challenges of process complexity, unstable interlayer electrical connections, and difficulties in achieving high-density integration of electronic components in existing manufacturing methods for multilayer flexible and stretchable electronics, a novel integrated manufacturing approach is proposed. This method is based on multi-material 3D printing and collaborative use of multiple nozzles. Through experimental comparisons and results analysis, the study unveils the significant influence and patterns of key printing process parameters, including printing speed, printing pressure, printing platform temperature, and nozzle diameter, on the thickness of dielectric material layers, intra-layer conductors, interlayer interconnect wire width, and overall printing quality. Consequently, an optimal range for printing parameters is identified, ensuring the direct formation of interlayer interconnect wires with a vertical printing height of up to 13 mm, thereby achieving stable electrical connections among multiple layers of circuits. Utilizing the proposed method, a rational multilayer circuit layout, and optimized process parameters, flexible PDMS dielectric material and high-stretchability nanosilver ink conductive material were employed to print multilayer flexible circuits with varying integration densities. The demonstrated performance showcases that this method provides a novel multi-material integrated manufacturing solution for multilayer flexible and stretchable electronic circuits.

Key words: multi-layer flexible and stretchable electronics, multi-material 3D printing, integrated manufacturing, vertically interconnected wires

中图分类号: