• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (21): 14-26.doi: 10.3901/JME.2024.21.014

• 机器人及机构学 • 上一篇    下一篇

扫码分享

多功能并联式六轮足救援机器人

刘尚非, 王军政, 刘冬琛, 赵江波, 沈伟, 汪首坤   

  1. 北京理工大学伺服运动系统驱动与控制工信部重点实验室 北京 100081
  • 收稿日期:2023-12-06 修回日期:2024-05-07 发布日期:2024-12-24
  • 通讯作者: 王军政,男,1964年出生,博士,教授,博士研究生导师。主要研究方向为伺服运动驱动与控制、机器人控制和负载模拟与静动态试验。E-mail:wangjz@bit.edu.cn
  • 作者简介:刘尚非,男,1999年出生,博士研究生。主要研究方向为轮足机器人运动规划与控制。E-mail:liushangfei@bit.edu.cn
  • 基金资助:
    国家自然科学基金(61973207,62273222)、上海市自然科学基金(21ZR1423000)和上海市启明星项目扬帆专项(23YF1413200)资助项目。

Multifunctional Parallel Six-wheel-legged Rescue Robot

LIU Shangfei, WANG Junzheng, LIU Dongchen, ZHAO Jiangbo, SHEN Wei, WANG Shoukun   

  1. The Ministry of Industry and Information Technology Key Laboratory of Servo Motion System Drive and Control, Beijing Institute of Technology, Beijing 100081
  • Received:2023-12-06 Revised:2024-05-07 Published:2024-12-24

摘要: 针对重大自然灾害救援任务对高机动、大负载和长续航移动机器人平台的需求,提出多功能并联式六轮足救援机器人。设计了具有气平衡传动连杆的轮腿结构以增强负载能力;采用高功率密度电池和燃油发电机混合供电的动力系统以提升续航能力;搭载了属具可更换的7自由度机械臂以应对搬运、破拆等多种任务需求;搭建多传感器融合的环境感知平台和基于5G通信网络的远程操作控制平台以实现远程人机交互控制。设计足式和轮式运动模态以满足机器人的基本运动需求,针对复杂、恶劣的地形条件,设计变机身高度、变支撑面的轮腿复合运动模态。基于机身动力学模型设计了姿态平稳最优控制器,配合机身高度控制器和足端力跟踪控制器实现了轮腿复合运动时的主动隔振控制。通过气平衡节能测试验证了气平衡传动连杆的节能效用;通过越障、跨沟和主动隔振试验,分别验证了机器人在应对障碍物、沟壑时的越障能力和在斜坡、崎岖地形下的运动稳定性,为机器人应对灾区恶劣环境、完成救援任务奠定了基础。

关键词: 轮足机器人, 气平衡, 轮腿复合运动, 主动隔振

Abstract: In response to the demand for highly mobile, large payload and long duration mobile robot platforms for major natural disaster rescue missions, a multifunctional parallel six-wheel-legged rescue robot is proposed. A leg structure with pneumatic balance transmission linkages is designed to enhance load capacity. A power system using a combination of high-power-density batteries and a gasoline engine generator is adopted to improve endurance. A 7-degree-of-freedom manipulator is equipped to handle various tasks such as transportation and demolition. An environment perception platform incorporating multiple sensors and a remote operation control platform based on 5G communication network are built to enable remote human-robot interaction control. Both walking and driving locomotion modes are designed to satisfy the robot's basic motion requirements. Specifically, a variable body height and variable support surface wheel-legged compound locomotion mode is designed to tackle complex and harsh terrain conditions. A posture-stabilizing optimal controller is developed based on the robot's body dynamics model, working in conjunction with body height controller and foot force tracking controller to achieve active vibration isolation control during wheel-legged compound locomotion. The energy-saving effect of the pneumatic balance transmission linkages is validated through energy-saving tests. Obstacle crossing, trench crossing, and active vibration isolation experiments are conducted to validate the robot's capability in overcoming obstacles, stability on slopes and rugged terrains. These experiments lay the foundation for the robot to cope with harsh environments in disaster areas and accomplish rescue tasks.

Key words: wheel-legged robot, pneumatic balance, wheel-legged compound locomotion, active vibration isolation

中图分类号: