• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (22): 59-68.doi: 10.3901/JME.2023.22.059

• 特邀专栏:动力电池安全应用技术 • 上一篇    下一篇

扫码分享

基于工况适应替代模型的电池液冷系统结构优化

吕超1, 宋彦孔2, 朱世怀1, 葛亚明3, 王立欣2   

  1. 1. 哈尔滨工业大学电气工程及自动化学院 哈尔滨 150001;
    2. 哈尔滨工业大学(深圳)机电工程与自动化学院 深圳 518001;
    3. 哈尔滨工业大学(深圳)实验与创新教育中心 深圳 518001
  • 收稿日期:2022-11-30 修回日期:2023-05-25 出版日期:2023-11-20 发布日期:2024-02-19
  • 通讯作者: 王立欣(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为动力电池BMS技术。E-mail:wlx@hit.edu.cn
  • 作者简介:吕超,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为动力/储能电池管理新理论与新技术。E-mail:lu_chao@hit.edu.cn;宋彦孔,男,1995年出生,博士研究生,主要研究方向为电池热管理系统结构优化与温度控制策略。E-mail:19B953023@stu.hit.edu.cn
  • 基金资助:
    广东省重点研发资助项目(2020B090919004)。

Structural Optimization of Liquid Cooling System for Lithium Ion Battery Based on Working Condition Adaptation Surrogate Model

Lü Chao1, SONG Yankong2, ZHU Shihuai1, GE Yaming3, WANG Lixin2   

  1. 1. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001;
    2. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518001;
    3. Education Center of Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518001
  • Received:2022-11-30 Revised:2023-05-25 Online:2023-11-20 Published:2024-02-19

摘要: 电池液冷系统的冷板结构决定了冷却系统的性能。不合理的冷板结构参数导致液冷系统能量损耗高,质量与体积大且电池温升抑制效果不明显。针对不同应用场景限制液冷系统结构优化效率的难题,将工况条件参数作为替代模型输入变量,构建包含工况条件输入的 Kriging 替代模型,实现任意工况与任意结构参数下电池热管理系统最高温度、最大温差以及冷却液进出口压降的精确仿真。确定蛇形流道冷板结构优化的能量损耗、冷板质量、最高温度三个优化目标,结合第二代非支配遗传算法完成不同工况下的冷板结构优化。以最高温度取最小值为例,分析流道直径随工况条件的变化规律。对比完成优化工作需要的时间,证实采用包含工况条件的替代模型进行液冷系统结构优化的高效性与便捷性。

关键词: 液冷系统, 替代模型, 多目标优化, 工况条件, 结构参数

Abstract: The structure of cold plate limits the performance of liquid cooling systems. The inappropriate structure parameter of cold plate leads to a high energy loss in the liquid cooling system, large mass and volume, and insignificant temperature suppression function. Aiming at the problem of low efficiency of the structural optimization in different application scenarios, the working condition parameters are used as the input variables of the surrogate model, and a kriging surrogate model is constructed. Accurate simulation of maximum temperature, maximum temperature difference, and pressure drop are realized under any working conditions and any structural parameters. Three optimization objectives of energy loss, cold plate mass, and maximum temperature are determined, and the cold plate structure optimization under different working conditions is completed by combining the second-generation non-dominated genetic algorithm. Taking the structure parameters when the maximum temperature is the minimum value of as an example, the variation of the flow channel diameter with the working conditions is analyzed. The time required to complete structure optimization is compared, and the efficiency and convenience of the surrogate model including the working conditions is confirmed.

Key words: liquid cooling system, surrogate model, multi-objective optimization, working conditions, structural parameters

中图分类号: