[1] 裴普 成, 刘永 峰. 液氧 固碳 零排 放内 燃机:CN102003305A[P]. 2011-04-06. PEI Pucheng, LIU Yongfeng. Internal combustion engine using liquid oxygen to fixed carbon without emissions:CN102003305A[P]. 2011-04-06. [2] ZHENG J, MILLER D L, CERNANSKY N P. A global reaction model for the HCCI combustion process[J]. SAE Transactions, 2004:1467-1476. [3] 刘永峰,张幽彤,秦建军,等. 直喷式柴油发动机缸内三维温度场的计算与试验[J]. 机械工程学报, 2007(2):196-201. LIU Yongfeng, ZHANG Youtong, QIN Jianjun, et al. Simulation and experiment for three-dimensional combustion temperature field in direct-injection diesel engine[J]. Journal of Mechanical Engineering, 2007(2):196-201. [4] 王琦玮,倪计民,陈泓,等. 文丘里管废气再循环系统对涡轮增压柴油机性能影响的研究[J]. 机械工程学报, 2016, 52(4):157-164. WANG Qiwei, NI Jimin, CHEN Hong, et al. Study on the effects of venture-EGR system on turbo-charged diesel engine performance[J]. Journal of Mechanical Engineering, 2016, 52(4):157-164. [5] 倪计民,高旭南,石秀勇,等. 基于多目标优化的柴油机 VNT- vEGR系统开发研究[J]. 机械工程学报, 2016, 52(2):108-115. NI jimin, GAO Xunan, SHI Xiuyong, et al. Study on the development of diesel engine VNT-vEGR system based on multi-objective optimization[J]. Journal of Mechanical Engineering, 2016, 52(2):108-115. [6] ZHANG K, BANYON C, BUGLER J, et al. An updated experimental and kinetic modeling study of n-heptane oxidation[J]. Combustion & Flame, 2016, 172(10):116-135. [7] DEĞIRMENCI E, ALAZREG A, INAL F. Detailed chemical kinetic modeling of fuel-rich n-heptane flame[J]. Fuel, 2020, 259:116228. [8] PATEL A, KONG S C, REITZ R D. Development and validation of a reduced reaction mechanism for HCCI engine simulations[J]. SAE Technical Paper, 2004-01-0558, 2004. [9] MAROTEAUX F, NOEL L. Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling[J]. Combustion & Flame, 2006, 146(1-2):246-267. [10] ZHANG K, LIANG Z, WANG J, et al. Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism[J]. Applied Energy, 2013, 105:223-228. [11] ZEUCH T, G MORÉAC, AHMED S S, et al. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction[J]. Combustion & Flame, 2008, 155(4):651-674. [12] BAHLOULI K, ATIKOL U, SARAY R K, et al. A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine[J]. Energy Conversion and Management, 2014, 79:85-96. [13] CHO J, SONG H H. Dimensionless parameters determining the effect of dilution on ignition delay of syngas and hydrocarbon fuels[J]. Combustion & Flame, 2020, 213:279-290. [14] 王作峰, 左承基, 陈汉玉, 等. ZS195柴油机无氮(O2/CO2)燃烧的排放特性[J]. 合肥工业大学学报(自然科学版), 2013, 36(3):257-260. WANG Zuofeng, ZUO Chengji, CHEN Hanyu, et al. Emission characteristics of ZS195 diesel engine under O2/CO2 combustion condition[J]. Journal of Hefei University of Technology (Natural Science), 2013, 36(3):257-260. [15] 王对对,左承基,王作峰,等. 无氮(O2/CO2)环境下柴油机燃烧规律的试验研究[J]. 合肥工业大学学报(自然科学版), 2013, 36(6):664-666, 703. WANG Duidui, ZUO Chengji, WANG Zuofeng, et al. Experimental research on the diesel combustion rules in the condition of no nitrogen (O2/CO2)[J]. Journal of Hefei University of Technology (Natural Science), 2013, 36(6):664-666, 703. [16] NIEMEYER K E, SUNG C J, RAJU M P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis[J]. Combustion & Flame, 2010, 157(9):1760-1770. [17] AGGARWAL S, AWOMOLO O, AKBER K, Ignition characteristics of heptanes-hydrogen and heptane-methane fuel blends at elevated pressures[J]. International Journal of Hydrogen Energy, 2011, 36(23):15392-15402. [18] HERNÁNDEZ J, SANZ-ARGENT J, CAROT J M, et al. Ignition delay time correlations for a diesel fuel with application to engine combustion modelling[J]. International Journal of Engine Research, 2010, 11(3):199-206. [19] ANDREA J, BRINCK T, KALGHATGI G T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model[J]. Combustion & Flame, 2008, 155(4):696-712. [20] 陈菲儿,邱越,阮灿,等. 基于直接关系图类方法的丙烯详细机理骨架简化[J]. 燃烧科学与技术, 2019, 25(6):475-482. CHEN Feier, QIU Yue, RUAN Can, et al. Skeletal reduction of detailed mechanism of propene employing directed relation graph and its deduced methods[J]. Journal of Combustion Science and Technology, 2019, 25(6):475-482. [21] PARKER A, WANSTALL C L, REGGETI S A, et al. Simultaneous rainbow schlieren deflectometry and OH* chemiluminescence imaging of a diesel spray flame in constant pressure flow rig[J]. Proceedings of the Combustion Institute, 2021, 38(4):5557-5565. [22] YIN Y, GONG X, ZHOU H, et al. The correlation of species concentration with heat release rate in an auto-igniting turbulent n-heptane spray flame[J]. Fuel, 2020, 262:116510. [23] SEISER R, PITSCH H, SESHADRI K, et al. Extinction and autoignition of n-heptane in counterflow configuration[J]. Proceedings of the Combustion Institute, 2000, 28(2):2029-2037. [24] SABIA P, LAVADERA M L, GIUDICIANNI P, et al. CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions[J]. Combustion & Flame, 2014, 162(3):533-543. [25] ABIÁN M, GIMÉNEZ-LÓPEZ J, BILBAO R, et al. Effect of different concentration levels of CO2 and H2O on the oxidation of CO:Experiments and modeling[J]. Proceedings of the Combustion Institute, 2011, 33(1):317-323. [26] WAGNON S W, WOOLDRIDGE M S. Effects of buffer gas composition on autoignition[J]. Combustion & Flame, 2014, 161(4):898-907. [27] KARIMI M, OCHS B, SUN W, et al. High pressure ignition delay times of H2/CO mixture in carbon dioxide and argon diluent[J]. Proceedings of the Combustion Institute, 2021, 38(1):251-260. [28] WU Z, KANG Z, DENG J, et al. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine[J]. Applied Energy, 2016, 184:594-604. [29] GONG Z, FENG L, QU W, et al. Auto-ignition characteristics of methane/n-heptane mixtures under carbon dioxide and water dilution conditions[J]. Applied Energy, 2020, 278:115639. |