机械工程学报 ›› 2021, Vol. 57 ›› Issue (15): 231-245.doi: 10.3901/JME.2021.15.231
刘广鑫1,2, 张定华1,2, 姚倡锋1,2
收稿日期:
2020-08-11
修回日期:
2020-12-18
出版日期:
2021-08-05
发布日期:
2021-11-03
通讯作者:
姚倡锋(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为航空难加工材料切削机理、航空复杂结构加工工艺技术、表面完整性抗疲劳制造技术、航空复杂结构智能加工技术。E-mail:chfyao@nwpu.edu.cn
作者简介:
刘广鑫,男,1996年出生,博士研究生。主要研究方向为切削加工。E-mail:liuguangxin_nwpu@mail.nwpu.edu.cn
基金资助:
LIU Guangxin1,2, ZHANG Dinghua1,2, YAO Changfeng1,2
Received:
2020-08-11
Revised:
2020-12-18
Online:
2021-08-05
Published:
2021-11-03
摘要: 钛合金是航空发动机关键构件的主选材料,切削加工是其制造工艺中最基本的加工方法之一。切削加工产生的热-机载荷会导致钛合金表层微观组织发生复杂变化,从而在加工表面形成表面变质层。表层微观组织严重影响着工件的物理、力学性能,因此,研究钛合金切削表层微观组织对改善航空发动机关键构件的使役性能与可靠性有重要意义。基于表面变质层的形成机理,工艺因子对表层微观组织的影响规律以及微观组织的模拟与预测三个方面的研究成果,介绍钛合金切削表层微观组织的研究现状。最后,分析现有研究存在的一些不足以及未来的研究方向。
中图分类号:
刘广鑫, 张定华, 姚倡锋. 钛合金切削表层微观组织研究进展[J]. 机械工程学报, 2021, 57(15): 231-245.
LIU Guangxin, ZHANG Dinghua, YAO Changfeng. Research Progress of the Microstructure on Machined Surface of Titanium Alloys[J]. Journal of Mechanical Engineering, 2021, 57(15): 231-245.
[1] 赵振业. 高强度合金应用与抗疲劳制造技术[J]. 航空制造技术, 2007(10):30-33. ZHAO Zhenye. High strength alloy application and anti-fatigue manufacturing technology[J]. Aeronautical Manufacturing Technology, 2007(10):30-33. [2] LIANG T, YAO C, REN J, et al. Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):1-14. [3] YAO C F, TAN L, REN J X, et al. Surface integrity and fatigue behavior for high-speed milling Ti-10V-2Fe-3Al titanium alloy[J]. Journal of Failure Analysis & Prevention, 2014, 14(1):102-112. [4] GINTING A, NOUARI M. Surface integrity of dry machined titanium alloys[J]. International Journal of Machine Tools and Manufacture, 2009, 49(3):325-332. [5] 杨振朝, 张定华, 姚倡锋, 等. TC4钛合金高速铣削参数对表面完整性影响研究[J]. 西北工业大学学报, 2009, 27(4):538-543. YANG Zhenchao, ZHANG Dinghua, YAO Changfeng, et al. Effects of high-speed milling parameters on surface integrity of TC4 titanium alloy[J]. Journal of Northwestern Polytechnical University, 2009, 27(4):538-543. [6] IBRAHIM G A, HARON C H C, GHANI J A. The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI[J]. Journal of Applied Sciences, 2009, 9(1):121-127. [7] 杜随更, 吕超, 任军学, 等. 钛合金TC4高速铣削表面形貌及表层组织研究[J]. 航空学报, 2008(6):1710-1715. DU Suigeng, LÜ Chao, REN Junxue, et al. Study on surface morphology and microstructure of titanium alloy TC4 under high-speed milling[J]. Acta Aeronautica et Astronautica Sinica, 2008(6):1710-1715. [8] 谭靓, 张定华, 姚倡锋. 高速铣削参数对TC17钛合金表面变质层的影响[J]. 航空材料学报, 2017, 37(6):75-81. TAN Liang, ZHANG Dinghua, YAO Changfeng. Effect of high-speed milling parameters on surface metamorphic layer of TC17 titanium alloy[J]. Journal of Aeronautical Materials, 2017, 37(6):75-81. [9] LI B, ZHANG S, LI J, et al. Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique[J]. Materials Science and Engineering:A, 2020, 773:138717. [10] WANG Q, WANG Q, LIU Z, et al. Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti-6Al-4V in high-speed machining[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1725-1736. [11] MINGARD K P, ROEBUCK B, BENNETT E G, et al. Comparison of EBSD and conventional methods of grain size measurement of hardmetals[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(2):213-223. [12] KAI H, CHEN N, WANG C, et al. Method for determining crystal grain size by X-Ray diffraction[J]. Crystal Research & Technology, 2018, 53(2):1700157. [13] 李建萍, 张维. 金属材料晶粒大小测量方法的研究[J]. 南昌航空工业学院学报, 2000, 14(3):19-22. LI Jianping, ZHANG Wei. The reserch for the methods of measuring grain size of metal materals[J]. Journal of Nanchang Hangkong University, 2000, 14(3):19-22. [14] ROTELLA G, DILLON O W, UMBRELLO D, et al. The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1-4):47-55. [15] VALERIE, RANDLE. Electron backscatter diffraction:Strategies for reliable data acquisition and processing[J]. Materials Characterization, 2009, 60(9):913-922. [16] LIANG X, LIU Z, WANG Q, et al. Tool wear-induced microstructure evolution in localized deformation layer of machined Ti-6Al-4V[J]. Journal of Materials Science, 2020, 55(8):3636-3651. [17] WANG Q, LIU Z. Plastic deformation induced nano-scale twins in Ti-6Al-4V machined surface with high speed machining[J]. Materials Science and Engineering:A, 2016, 675:271-279. [18] DAYMI A, BOUJELBENE M, AMARA A B, et al. Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V[J]. Materials Science & Technology, 2011, 27(1):387-394. [19] CHE-HARON C H. Tool life and surface integrity in turning titanium alloy[J]. Journal of Materials Processing Technology, 2001, 118(1):231-237. [20] VELÁSQUEZ J D P, TIDU A, BOLLE B, et al. Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy[J]. Materials Science & Engineering A, 2010, 527(10-11):2572-2578. [21] WANG Q, LIU Z, YANG D, et al. Metallurgical-based prediction of stress-temperature induced rapid heating and cooling phase transformations for high speed machining Ti-6Al-4V alloy[J]. Materials & Design, 2017, 119(APR):208-218. [22] YANG D, LIU Z. Quantification of Microstructural Features and Prediction of Mechanical Properties of a Dual-Phase Ti-6Al-4V Alloy[J]. Materials, 2016, 9(8):628. [23] WU G Q, SHI C L, SHA W, et al. Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys[J]. Materials & Design, 2013, 46:668-674. [24] KUMPFERT J, KIM Y W, DIMIDUK D M. Effect of microstructure on fatigue and tensile properties of the gamma-Ti alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1995, 192-193(Part 1):465-473. [25] JEONG D, KWON Y, GOTO M, et al. High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy[J]. International Journal of Mechanical and Materials Engineering, 2017, 12(1):1-10. [26] CRUPI V, EPASTO G, GUGLIELMINO E, et al. Influence of microstructure[alpha+beta and beta] on very high cycle fatigue behaviour of Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2017, 95:64-75. [27] JAGO G, BECHET J. Influence of microstructure of (α+β) Ti-6.2.4.6 alloy on high-cycle fatigue and tensile test behaviour[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 22(8):647-655. [28] OGUMA H, NAKAMURA T. The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V[J]. Scripta Materialia, 2010, 63(1):32-34. [29] 杨慎亮, 李勋, 王子铭, 等. TC4侧铣表面完整性对试件疲劳性能的影响[J]. 表面技术, 2019, 48(11):372-380. YANG Shenliang, LI Xun, WANG Ziming, et al. Influence of side milling on surface integrity and fatigue behavior of TC4 specimens[J]. Surface Technology, 2019, 48(11):372-380. [30] ROTELLA G, UMBRELLO D. Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy[J]. CIRP Annals Manufacturing Technology, 2014, 63(1):69-72. [31] PAN Z, LIANG S Y, GARMESTANI H, et al. Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2016, 87:859-866. [32] ARISOY Y M, ÖZEL T. Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy[J]. Advanced Manufacturing Processes, 2015, 30(4):425-433. [33] ARISOY Y M, ÖZEL T. Prediction of machining induced microstructure in Ti-6Al-4V alloy using 3-D FE-based simulations:Effects of tool micro-geometry, coating and cutting conditions[J]. Journal of Materials Processing Technology, 2015, 220:1-26. [34] CHE-HARON C H, JAWAID A. The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J]. Journal of Materials Processing Technology, 2005, 166(2):188-192. [35] HARDEN P M, PRETORIUS C J, SOO S L, et al. Tool wear behaviour and workpiece surface integrity when turning Ti-6Al-2Sn-4Zr-6Mo with polycrystalline diamond tooling[J]. CIRP Annals, 2015, 64(1):109-112. [36] LIANG X, LIU Z. Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2017, 93:1617-1626. [37] LIANG X, LIU Z, WANG B, et al. Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V[J]. International Journal of Mechanical Sciences, 2018, 140:1-12. [38] HUGHES J I, SHARMAN A R C, RIDGWAY K. The Effect of cutting tool material and edge geometry on tool life and workpiece surface integrity[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2006, 220(2):93-107. [39] 谭靓, 刘维伟, 姚倡锋, 等. 球头铣刀刀具姿态对钛合金加工表面完整性的影响[J]. 工具技术, 2015, 49(12):39-43. TAN Liang, LIU Weiwei, YAO Changfeng, et al. Effect of tool posture on surface integrity in ball end milling of titanium alloy[J]. Tool Engineering, 2015, 49(12):39-43. [40] GINTING A, NOUARI M. Surface integrity of dry machined titanium alloys[J]. International Journal of Machine Tools & Manufacture, 2009, 49(3-4):325-332. [41] SHI Q, HE N, LI L, et al. Analysis on surface integrity during high speed milling for new damage-tolerant titanium alloy[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(3):222-226. [42] YANG H C, CHEN Z T, ZHOU Z T. Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5):1113-1126. [43] LI M Q, CHEN D J, XIONG A M, et a1. An adaptive prediction model of grain size for the forging of Ti-6Ai-4V alloy based on fuzzy neural networks[J]. Journal of Materials Processing Technology, 2002, 123(3):377-381. [44] 熊爱明, 薛善坤, 李淼泉. TC4钛合金高温变形时微观组织变化的计算[J]. 塑性工程学报, 2002, 9(1):14-16. XIONG Aiming, XUE Shankun, LI Miaoquan. Microstructure evolution and modeling during isothermal deformation of TC4 titanium alloy[J]. Journal of Plasticity Engineering, 2002, 9(1):14-16. [45] 李萍, 薛克敏, 吕炎, 等. Ti-15-3合金热反挤成形微观组织的模拟[J]. 机械工程学报, 2003, 39(1):133-136. LI Ping, XUE Kemin, Lü Yan, et al. Simulation of microstructure of Ti-15-3 alloy during hot back-extrusion[J]. Journal of Mechanical Engineering, 2003, 39(1):133-136. [46] SUN Z C, YANG H, HAN G J, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy[J]. Materials Science & Engineering:A, 2010, 527(15):3464-3471. [47] DING H, SHIN Y C. Dislocation density-based grain refinement modeling of orthogonal cutting of titanium[J]. Journal of Manufacturing Science & Engineering, 2014, 136(4):152-161. [48] 钟鑫, 赵军, 王银涛, 等. 钛合金加工过程中晶粒尺寸的模拟与分析[J]. 工具技术, 2018, 52(03):10-14. ZHONG Xin, ZHAO Jun, WANG Yintao, et al. Simulation and analysis of grain size in machining titanium alloy[J]. Tool Engineering, 2018, 52(03):10-14. [49] QUAN G, PAN J, ZHANG Z. Phase transformation and recrystallization kinetics in space-time domain during isothermal compressions for Ti-6Al-4V analyzed by multi-field and multi-scale coupling FEM[J]. Materials & Design, 2016, 94:523-535. [50] PAN Z, LIANG S Y, GARMESTANI H, et al. Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2016, 87:859-866. [51] 张军, 陈文雄, 郑成武, 等. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017(6):122-130. ZHANG Jun, CHEN Wenxiong, ZHENG Chengwu, et al. Phase-field modeling of austenite-to-ferrite transformation in Fe-C-Mn ternary alloys[J]. Acta Metallurgica Sinica, 2017(6):122-130. [52] BHATTACHARYA A, UPADHYAY C S, SANGAL S. Phase-field model for mixed-mode of growth applied to austenite to ferrite transformation[J]. Metallurgical & Materials Transactions A, 2015, 46(2):926-936. [53] HEO T W, CHEN L. Phase-field modeling of nucleation in solid-state phase transformations[J]. JOM, 2014, 66(8):1520-1528. [54] 吴全兴. 相场法模拟钛合金相变[J]. 钛工业进展, 2013(5):42-42. WU Quanxing. Simulate the phase transition of titanium alloy using phase field method[J]. Titanium Industry Progress, 2013(5):42. [55] LU L, SRIDHAR N, ZHANG Y. Phase field simulation of powder bed-based additive manufacturing[J]. Acta Materialia, 2018, 144:801-809. [56] ANDERSON M P, SROLOVITZ D J, GREST G S, et al. Computer simulation of grain growth-I. Kinetics[J]. Acta Metallurgica, 1984, 32(5):783-791. [57] ANDERSON M P, GREST G S, SROLOVITZ D J. Grain growth in three dimensions:A lattice model[J]. Scripta Metallurgica, 1985, 19(2):230. [58] ROLLETT A D, SROLOVITZ D J, DOHERTY R D, et al. Computer simulation of recrystallization in non-uniformly deformed metals[J]. Acta Metallurgica, 1989, 37(2):627-639. [59] ROLLETT A D, SROLOVITZ D J, ANDERSON M P, et al. Computer simulation of recrystallization-III. Influence of a dispersion of fine particles[J]. Acta Metallurgica et Materialia, 1992, 40(12):3475-3495. [60] HORE S, DAS S K, BANERJEE S, et al. Monte Carlo simulation of microstructure evolution during thermo-mechanical rolling of steel using grid computing technology:2013 National Conference on Parallel Computing Technologies (PARCOMPTECH) 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH)[Z]. 20131-7. [61] TONG M, LI D, LI Y, et al. Modeling the austenite-ferrite isothermal transformation in an Fe-C binary system and experimental verification[J]. Metallurgical and Materials Transactions A, 2002, 33(10):3111-3115. [62] TONG M, LI D, LI Y, et al. Monte Carlo-method simulation of the deformation-induced ferrite transformation in the Fe-C system[J]. Metallurgical and Materials Transactions A, 2004, 35(5):1565-1577. [63] 李旭. TA9钛合金热变形过程微观组织演变的研究[D]. 南京:南京航空航天大学, 2012. LI Xu. Microstructure evolution research on TA9 titanium alloy in hot deformation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012. [64] GOETZ R L, SEETHARAMAN V. Modeling dynamic recrystallization using cellular automata[J]. Scripta Materialia, 1998, 38(3):405-413. [65] DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49(16):3163-3175. [66] DING R, GUO Z X. Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing:experimental and simulative investigations[J]. Materials Science and Engineering:A, 2004, 365(1):172-179. [67] DING R, GUO Z X. Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach[J]. Computational Materials Science, 2002, 23(1-4):218. [68] 甘国强. TA15合金形变-相变耦合过程的介观模拟计算[D]. 合肥:合肥工业大学, 2013. GAN Guoqiang. Mesoscopic simulation of the coupling between deformation and phase transformation in TA15 alloy[D]. Hefei:Hefei University of Technology, 2013. [69] SONG K J, WEI Y H, FANG K, et al. Cellular automaton-based study of factors that affect dynamic solid phase transformation kinetics[J]. Applied Mathematical Modelling, 2015, 39(17):5058-5072. [70] SONG K J, WEI Y H, DONG Z B, et al. Virtual front tracking cellular automaton modeling of isothermal β to α phase transformation with crystallography preferred orientation of TA15 alloy[J]. Modelling & Simulation in Materials Science & Engineering, 2014, 22(1):5006. [71] LIU Y X, LIN Y C, ZHOU Y. 2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions[J]. Materials Science & Engineering:A, 2017, 619:88-99. [72] CHEN D, LIN Y C, WU F. A design framework for optimizing forming processing parameters based on matrix cellular automaton and neural network-based model predictive control methods[J]. Applied Mathematical Modelling, 2019, 76:918-937. [73] LIU Y X, LIN Y C, LI H B, et al. Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model[J]. Materials Science & Engineering:A, 2015, 626:432-440. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[3] | 周京国, 张宇航, 隋天一, 行登海, 董宝昆, 付清宇, 付俊帆, 林彬. 分离-接触特征对钛合金超声振动辅助铣削加工特性影响规律研究[J]. 机械工程学报, 2024, 60(9): 97-113. |
[4] | 郑开魁, 赵信哲, 牟刚, 任志英. 超声波滚压强化TC11钛合金的表面质量与摩擦磨损性能[J]. 机械工程学报, 2024, 60(9): 137-151. |
[5] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[6] | 岳晓明, 臧烁, 赵永华, 刘为东, 尹瀛月, 张勤河. 高品质超大深径比小孔电火花电解复合加工实验研究[J]. 机械工程学报, 2024, 60(9): 374-382. |
[7] | 魏荣, 徐默然, 李常平, 李树健, 李鹏南. 电火花辅助铣削钛合金多能场建模及调控优化研究[J]. 机械工程学报, 2024, 60(9): 393-409. |
[8] | 韩建超, 张孟非, 王斌, 国生辉, 贾燚, 王涛. 钛合金电致塑性本构方程及多物理场耦合分析[J]. 机械工程学报, 2024, 60(9): 421-433. |
[9] | 张禹森, 陈雷, 刘胜杰, 胡峻华, 张启飞, 崔明亮, 胡建良, 金淼. TB6钛合金模锻件低倍组织局部粗晶形成机理及预测[J]. 机械工程学报, 2024, 60(8): 121-131. |
[10] | 杜随更, 刘冠翔, 陈虎, 胡弘毅, 李菊. TC17(α+β)/TC17(β)线性摩擦焊接过程中焊合区组织及其织构演变[J]. 机械工程学报, 2024, 60(2): 99-106. |
[11] | 施壮, 李长河, 刘德伟, 张彦彬, 秦爱国, 曹华军, 陈云. 不等螺旋角立铣刀瞬时铣削力模型与验证[J]. 机械工程学报, 2024, 60(15): 393-406. |
[12] | 赵宇辉, 赵吉宾, 李明玥, 何振丰, 王志国, 贺晨. 激光熔化沉积TC4钛合金电涡流检测仿真及亚表面缺陷检测[J]. 机械工程学报, 2024, 60(14): 34-41. |
[13] | 贺毅, 肖贵坚, 朱升旺, 刘岗, 黄云. 皮秒激光辅助砂带磨削TC17钛合金材料去除行为研究[J]. 机械工程学报, 2023, 59(9): 360-372. |
[14] | 张国栋, 张鹏, 高健时, 余槐, 袁鸿, 丁宁, 熊华平. 电子束熔丝增材制造TC11钛合金组织及力学性能[J]. 机械工程学报, 2023, 59(4): 105-112. |
[15] | 刘明政, 李长河, 张彦彬, 杨敏, 崔歆, 李本凯, 高腾, 王大中, 安庆龙. 低温冷风微量润滑磨削钛合金换热机理与对流换热系数模型[J]. 机械工程学报, 2023, 59(23): 343-357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||