[1] 李喜孟. 无损检测[M]. 北京:机械工业出版社,2001. LI Ximeng. Nondestructivetesting[M]. Beijing:China Machine Press,2001. [2] 沈玉娣. 现代无损检测技术[M]. 西安:西安交通大学出版社,2012. SHEN Yudi. Modern nondestructive testing technology[M]. Xi'an:Xi'an Jiaotong University Press,2012. [3] 李永杰,韩赞东. 陶瓷涂层厚度的水浸超声谐振测量[J]. 无损检测,2017,39(3):1-4. LI Yongjie,HAN Zandong. Ultrasonic resonance measuring for the thickness of ceramics coatings[J]. Nondestructive Testing,2017,39(3):1-4. [4] 周莹. 基于DSP的超声测厚系统研究[D]. 哈尔滨:哈尔滨工程大学,2009. ZHOU Ying. Research on ultrasonic thickness system based on DSP[D]. Harbin:Harbin Engineering University,2009. [5] 齐水宝,高会栋,徐延稳,等. 电磁超声高温测厚原理及应用案例[J]. 无损检测,2013,35(12):53-57. QI Shuibao,GAO Huidong,XU Yanwen,et al. Principle and applications of high temperature thickness measurement with EMAT[J]. Nondestructive Testing,2013,35(12):53-57. [6] 万正军,甘芳吉,罗航,等. 基于电位矩阵法的金属管道腐蚀剩余厚度监测研究[J]. 四川大学学报,2013,45(4):97-102. WAN Zhengjun,GAN Fangji,LUO Hang,et al. Research on monitoring the remaining thickness of the corrosion of metal pipe based on the field signature method[J]. Journal of Sichuan University,2013,45(4):97-102. [7] 朱秋峰,张新燕,李大安. X射线测厚技术在热轧钢板生产中的应用[J]. 无损检测,2008,30(5):321-323. ZHU Qiufeng,ZHANG Xinyan,LI Daan. Application of X-ray measuring technique in hot strip mill[J]. Nondestructive Testing,2008,30(5):321-323. [8] 严仍春. 涡流测厚无损检测技术及其应用[J]. 无损检测,1996(6):167-172. YAN Rengchun. The sixth special-eddy current thickness nondestructive testing technology and its applications[J]. Nondestructive Testing,1996(6):167-172. [9] 董殿会,程江,王广彪. 红外测厚技术在超薄薄膜和多层共挤薄膜生产线上的应用[J]. 塑料加工,2003,38(4):31-37. DONG Dianhui,CHENG Jiang,WANG Guangbiao. Infrared thickness meaurment technology applied in thin film and multi-layer composite film production line[J]. Plastic Processing,2003,38(4):31-37. [10] 李晓晖,傅攀,张智. 基于声发射技术的机械密封膜厚测量[J]. 四川大学学报,2014,46(6):198-204. LI Xiaohui,FU Pan,ZHANG Zhi,Measurement of film thickness in mechanical seals based on AE technology[J]. Journal of Sichuan University,2014,46(6):198-204. [11] 胡远. 基于机器视觉的中厚钢板轮廓检测系统的研究[D]. 杭州:浙江理工大学,2017. HU Yuan. Study of thickness plate contour detection system based on machine vision[D]. Hangzhou:Zhejiang University of Science and Technology,2017. [12] BOUDA A B,LEBAILI S,BENCHAALA A. Grain size influence on ultrasonic velocities and attenuation[J]. NDT& E International,2003,36(1):1-5. [13] FOSTER D R,DAPINO M J,BABU S S. Elastic constants of ultrasonic additive manufactured Al 3003-H18[J]. Ultrasonics,2013,53(1):211-218. [14] SCHMERR L W. Fundamentals of ultrasonic nondestructive evaluation[M]. Berlin:Springer,2016. [15] 徐春广,宋文涛,潘勤学,等. 残余应力的超声检测方法[J]. 无损检测,2014,36(7):25-31. XU Chunguang,SONG Wentao,PAN Qinxue,et al. Residual stress nondestructive testing method using ultrasonic[J]. Nondectructive Testing,2014,36(7):25-31. [16] LIU D,EBBINI E S. Real-time 2-D temperature imaging using ultrasound[J]. IEEE Trans. Biomed. Eng.,2010,57(1):12-16. [17] 沈中华,袁玲,张宏超,等. 固体中的激光超声[M]. 北京:人民邮电出版社,2015.SHEN Zhonghua,YUAN Ling,ZHANG Hongchao,et al. Laser ultrasound in solid[M]. Beijing:Posts & Telecom Press,2015. [18] SCRUBYC B,DRAINL E. Laser ultrasonics techniques and applications[M]. Boca Raton:CRC Press,1990. [19] HUANG J H J,NAGATA Y,KRISHNASWAMY S,et al. Laser-based ultrasonics for flaw detection[C/CD]//1994 Proceedings of IEEE Ultrasonics Symposium. IEEE,2012. [20] NI C,CHIGAREV N,TOURNAT V,et al. Probing of laser-induced crack closure by pulsed laser-generated acoustic waves[J]. Journal of Applied Physics,2013,113(1):014906. [21] MEZIL S,CHIGAREV N,TOURNAT V,et al. Two dimensional nonlinear frequency-mixing photo-acoustic imaging of a crack and observation of crack phantoms[J]. Journal of Applied Physics,2013,114(17):174901. [22] MEZIL S,CHIGAREV N,TOURNAT V,et al. Evaluation of crack Parameters by a nonlinear frequency-mixing laser ultrasonics method[J]. Ultrasonics,2016:225-235. [23] MONCHALINJP. Laser-ultrasonics:Principles and industrial applications[C/CD]//Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization,2007:79-115. [24] LIM C S,HONG T S,CHOI G S,et al. Development of a system to measure austenite grain size of plate steel using laser-based ultrasonics[J]. AIP Conf. Proc.,2007,894:1175-1182. [25] 董利明,李加,倪辰荫,等. 基于光热调制检测发动机叶片疲劳裂纹的激光声表面波方法[J]. 中国激光,2011,38(11):84-88. DONG Liming,LI Jia,NI Chenyin,et al. Crack detection of engine blade based on laser-heating assisted surface acoustic waves generated by scanning laser[J]. Chinese Journal of Lasers,2011,38(11):84-88. [26] DONG L,LOMONOSOV A M,SHEN Z,et al. Evaluation of third-order elastic constants using laser-generated multi-type ultrasound for isotropic materials[J]. Ultrasonics,2013,53(6):1079-1083. [27] DEWHURST R J,EDWARDS C,MCKIE A D,et al. A remote laser system for ultrasonic velocity-measurement at high-temperatures[J]. Journal of Applied Physics,1988,63(4):1225-1227. [28] DUBOIS M,MOREAU A,BUSSIERE J F,et al.Ultrasonic velocity measurements during phase transformations in steels using laser ultrasonics[J]. Journal of Applied Physics,2001,89(11):6487-6495. [29] FOMITCHOV P A,KIM Y K,KROMINE A K,et al. Laser ultrasonic array system for real-time cure monitoring of polymer-matrix composites[J]. Journal of Composite Materials,2002,36(15):1889-1901. [30] BONDARENKO A N,DROBOTI U B,KRUGLOVS V. Optical excitation and detection of nanosecond acoustic pulses in nondestructive testing[J]. Sov. J. Nondestruct. Test.,1977,12(6):655-658. [31] TAM A C. Pulsed-laser generation of ultrashort acoustic pulses:Application for thin-film ultrasonic measurements[J]. Appl. Phys. Lett.,1984,45(5):510-512. [32] FUKUHARA M,SANPEI A. Elastic moduli and internal friction of low carbon and stainless steels as a function of temperature[J]. ISIJ International,1993,33(4):508-512. |