[1] KEYNES R D, MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel[J]. The Journal of Physiology,1953,119(2-3):315-351. [2] MARKHAM M R. Electrocyte physiology:50 years later[J]. J Exp Biol,2013,216(Pt 13):2451-8. [3] XU J,YANG F,HAN D,et al. Phenomena of synchronized response in biosystems and the possible mechanism[J]. Biochemical and Biophysical Research Communications,2018,496(2):661-666. [4] CATANIA K C. Electric EELS concentrate their electric field to induce involuntary fatigue in struggling prey[J]. Current Biology,2015,25(22):2889-2898. [5] CATANIA K C. Power transfer to a human during an electric Eel's shocking leap[J]. Current Biology,2017,27(18):2887. [6] CATANIA K C. Electric eels use high-voltage to track fast-moving prey[J]. Nature Communications,2015,6:8638. [7] JIE Y,JIANG Q W,ZHANG Y,et al. A structural bionic design:From electric organs to systematic triboelectric generators[J]. Nano Energy,2016,27:554-560. [8] ZOU Y,TAN P,SHI B,et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting[J]. Nature Communications,2019,10(1):2695. [9] WANG C,CHOI E,PARK J. High-voltage nanofluidic energy generator based on ion-concentration-gradients mimicking electric eels[J]. Nano Energy,2018,43:291-299. [10] SCHROEDER T B H,GUHA A,LAMOUREUX A,et al. An electric-eel-inspired soft power source from stacked hydrogels[J]. Nature,2017,552:214-218. [11] YEOM S W,OH I K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators[J]. Smart Materials and Structures,2009,18(8):085002. [12] MUST I,KAASIK F,PÕLDSALU I,et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials,2015,17(1):84-94. [13] XIAO Y Y,JIANG Z C,TONG X,et al. Biomimetic locomotion of electrically powered "Janus" soft robots using a liquid crystal polymer[J]. Adv. Mater.,2019,31(36):e1903452. [14] HAGHIASHTIANI G,HABTOUR E,PARK S H,et al. 3D printed electrically-driven soft actuators[J]. Extreme Mechanics Letters,2018,21:1-8. [15] KIM K J,SHAHINPOOR M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors,actuators and artificial muscles[J]. Polymer,2002,43(3):797-802. [16] JUNG K,NAM J,CHOI H. Investigations on actuation characteristics of IPMC artificial muscle actuator[J]. Sensors and Actuators A:Physical,2003,107(2):183-192. [17] SHOJI E,HIRAYAMA D. Effects of humidity on the performance of ionic polymer−metal composite actuators:Experimental study of the back-relaxation of actuators[J]. The Journal of Physical Chemistry B,2007,111(41):11915-11920. [18] NEMAT-NASSER S,WU Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. Journal of Applied Physics,2003,93(9):5255-5267. [19] 漆炜,樊建平,龚亚琦. 模型参数对IPMC变形性能影响分析[J]. 应用力学学报,2013(4):613-618. QI Wei,FANJianping,GONG Yaqi. Analysis of the influence of model parameters on the deformation performance of IPMC[J]. Chinese Journal of Applied Mechanics,2013(4):613-618. |