机械工程学报 ›› 2021, Vol. 57 ›› Issue (5): 148-156.doi: 10.3901/JME.2021.05.148
廖晓波1,2, 庄健1, 邓亚楼1, 王志武1, 焦阳博翰1, 蔡勇2, 廖璇2
收稿日期:
2020-05-06
修回日期:
2021-01-07
出版日期:
2021-03-05
发布日期:
2021-04-28
通讯作者:
庄健(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为微纳测量技术、智能优化算法、机电控制系统。E-mail:zhuangjian@mail.xjtu.edu.cn.
作者简介:
廖晓波,男,1982年出生,博士研究生。主要研究方向为微纳检测与制造,机器视觉伺服控制。E-mail:liaoxiaobo@swust.edu.cn
基金资助:
LIAO Xiaobo1,2, ZHUANG Jian1, DENG Yalou1, WANG Zhiwu1, JIAOYANG Bohan1, CAI Yong2, LIAO Xuan2
Received:
2020-05-06
Revised:
2021-01-07
Online:
2021-03-05
Published:
2021-04-28
摘要: 基于扫描探针的弯月形液滴限制电化学沉积方法(Meniscus confined electrochemical deposition,MCED)能够在微纳尺度进行结构制造和表面修饰,近年来受到了众多研究者的广泛关注。然而,在三维微纳结构制造(“写”)过程中,无法在线原位检测(“读”)加工结构形貌,导致其应用受到一定的限制。本研究对比分析了MCED微纳制造方法和扫描电化学池显微镜检测方法(Scanning electrochemical cell microscopy,SECCM)在系统物理配置和原理上的异同;提出SECCM交流调制模式对采用MCED方法制造的微纳结构进行在线原位成像,通过对比SECCM直流和交流模式的检测结果,发现交流模式能够有效克服直流模式对样本表面造成损伤的缺点,且抗干扰能力明显提高,成像图像的MSE降低了27.85%。对比扫描电子显微镜成像结果,验证了交流扫描模式能够较好的对样本进行在线原位成像,增加了MCED试验操作的在线可观测性和操作的准确性。因此,该方法使得在线MCED微纳操作可视、续接、定点修饰等功能成为可能,对扩宽MCED在微纳领域的应用具有重要意义。
中图分类号:
廖晓波, 庄健, 邓亚楼, 王志武, 焦阳博翰, 蔡勇, 廖璇. 一种基于扫描探针的微纳结构原位在线读写方法[J]. 机械工程学报, 2021, 57(5): 148-156.
LIAO Xiaobo, ZHUANG Jian, DENG Yalou, WANG Zhiwu, JIAOYANG Bohan, CAI Yong, LIAO Xuan. An In-situ Online Micro-nano Structure Read-write Method Based on Scanning Probe[J]. Journal of Mechanical Engineering, 2021, 57(5): 148-156.
[1] 明平美,李欣潮,张新民,等. 电化学三维微沉积技术及其研究进展[J]. 中国科学:技术科学,2018,48(4):5-17.MING Pingmei,LI Xinchao,ZHANG Xinmin,et al. Research progress of electrochemical three-dimensional micro-deposition technology[J]. Scientia Sinica Technologica,2018,48(4):347-359. [2] HIRT L,REISER A,SPOLENAK R,et al. Additive manufacturing of metal structures at the micrometer scale[J]. Advanced Materials,2017,29(17):1604211.1. [3] MURR L E,GAYTAN S M,RAMIREZ D A,et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science & Technology,2012,28(1):1-14. [4] FRAZIER,WILLIAM E. Metal additive manufacturing:A review[J]. Journal of Materials Engineering & Performance,2014,23(6):1917-1928. [5] MILEWSKI J O. Additive manufacturing of metals[J]. Springer Series in Materials Science,2017:258. [6] MACDONALD E,WICKER R. Multiprocess 3D printing for increasing component functionality[J]. Science,2016,353(6307):aaf2093. [7] EXNER H,HORN M,STREEK A,et al. Laser micro sintering:A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder[J]. Virtual & Physical Prototyping,2008,3(1):3-11. [8] VAEZI M,SEITZ H,YANG S. A review on 3D micro-additive manufacturing technologies[J]. International Journal of Advanced Manufacturing Technology,2013,67(5-8):1957-1957. [9] HU J,YU M F. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds[J]. Science,2010,329(5989):313-316. [10] HU J. Interfacial physics in meniscus-confined electrodeposition and its applications for fabricating electronic structures[D]. Urbana:University of Illinois at Urbana-Champaign,2011. [11] MCKELVEY K,O'CONNELL M A,UNWIN P R. Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM)[J]. Chemical Communications,2013,49(29):2986-2988. [12] HIRT L,RAPHAEL R,GRÜTER,BERTHELOT T,et al. Local surface modification via confined electrochemical deposition with FluidFM[J]. RSC Advances,2015,5. [13] SEOL S K,KIM D,LEE S,et al. Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures[J]. Small,2015,11(32):3896-3902. [14] WILLIAMS C G,EDWARDS M A,COLLEY A L,et al. Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity[J]. Analytical Chemistry,2009,81(7):2486-2495. [15] NEIL E,MATHIAS S,ALEXANDER W C,et al. Localized high resolution electrochemistry and multifunctional imaging:Scanning electrochemical cell microscopy[J]. Analytical Chemistry,2010,82(22):9141-9145. [16] TAO B,UNWIN P R,BENTLEY C L. Nanoscale variations in the electrocatalytic activity of layered transition-metal dichalcogenides[J]. The Journal of Physical Chemistry C,2020,124(1):789-798. [17] TAKAHASHI Y,KUMATANI A,MUNAKATA H,et al. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nature Communications,2014,5:5450. [18] EBEJER N,ALEIX G GÜELL,LAI S C S,et al. Scanning electrochemical cell microscopy:A versatile technique for nanoscale electrochemistry and functional imaging[J]. Annual Review of Analytical Chemistry,2013,6(1):329-351. [19] BENTLEY C L,EDMONDSON J,MELONI G N,et al. Nanoscale electrochemical mapping[J]. Analytical Chemistry,2018. [20] PATEL A N,MCKELVEY K,UNWIN P R. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces[J]. Journal of the American Chemical Society,2012,134(50):20246. [21] MILLER T S,EBEJER N,GUEELL A G,et al. Electrochemistry at carbon nanotube forests:Sidewalls and closed ends allow fast electron transfer[J]. Chemical Communications,2012,48(60):7435-7437. [22] ZHANG P,AYDEMIR N,ALKAISI M M,et al. Direct writing and characterization of three-dimensional conducting polymer PEDOT arrays[J]. ACS Applied Materials & Interfaces,2018,10(14):11888. [23] 郭仁飞,庄健,于德弘. 用于三维形貌定量测量的调制电流式扫描离子电导显微镜[J]. 西安交通大学学报,2016(7):83-88.GUO Renfei,ZHUANG Jian,YU Dehong. Three-dimensional quantitative surface topography measurement using modulated-current based scanning ion conductance microscopy[J]. Journal of Xi'an Jiaotong University,2016,50(7):83-88. [24] LIAO X,ZHUANG J,DENG Y,et al. A closed-loop constant deposition current control method based on MCED circuit model[J]. AIP Advances,2020,10(4):045118. [25] MORSALI S,DARYADEL S,ZHOU Z,et al. Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition:Effect of nozzle speed and diameter[J]. Journal of Applied Physics,2017,121(21):203-213. [26] MORSALI S,DARYADEL S,ZHOU Z,et al. Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition:Effect of environmental humidity[J]. Journal of Applied Physics,2017,121(2):024903. [27] FISHER J S,KOTTKE P A,KIM S,et al. Rapid electron beam writing of topologically complex 3D nanostructures using liquid phase precursor[J]. Nano Letters,2015,15(12):5b04225. [28] ZHUANG Jian,LIAO Xiaobo,DENG Yalou,et al. A circuit model for SECCM and topographic imaging method in AC mode[J]. Micron,2019,126:102738. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||