• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (14): 161-172.doi: 10.3901/JME.2020.14.161

• 运载工程 • 上一篇    下一篇

扫码分享

多轴轮边驱动铰接客车的横摆稳定性控制策略

王文伟, 赵一凡, 张伟, 林程   

  1. 北京理工大学电动车辆国家工程实验室 北京 100081
  • 收稿日期:2019-08-23 修回日期:2020-02-23 出版日期:2020-07-20 发布日期:2020-08-12
  • 通讯作者: 王文伟(通信作者),男,1980年出生,副教授,硕士研究生导师。主要研究方向为电动汽车及动力学控制。E-mail:bitev@bit.edu.cn
  • 作者简介:赵一凡,男,1996年出生。主要研究方向为电动汽车及动力学控制。E-mail:zyf960420@163.com
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0103801)。

Yaw Stability Control Strategy of Multi-wheel Independent Electric Articulated Bus

WANG Wenwei, ZHAO Yifan, ZHANG Wei, LIN Cheng   

  1. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081
  • Received:2019-08-23 Revised:2020-02-23 Online:2020-07-20 Published:2020-08-12

摘要: 多轴轮边驱动铰接客车兼具铰接车辆的力学特性和分布驱动的动力特性,针对其在极限工况中可能出现的折叠、甩尾、横摆等问题,进行横摆稳定性控制策略研究;建立线性三自由度参考模型,通过粒子滤波对前车厢的相关状态变量进行估计,估计结果证明模型的有效性;根据三自由度参考模型得到理想响应,采用分层控制的思想,在上层采用模糊等效切换滑模控制,前车厢采用横摆角速度和铰接角联合控制,后车厢采用横摆角速度控制,从而得到前后车厢所需附加横摆力矩;下层采用二次规划法,以轮胎附着利用率为优化目标进行转矩分配。在dSPACE-ASM平台上进行转向角阶跃工况和双移线工况的仿真分析。结果表明,该控制策略能够在多种工况下有效改善车辆的横摆稳定性,与等转矩分配相比,轮胎附着利用率得到有效减小,控制效果更加显著。

关键词: 轮边驱动, 铰接客车, 模糊等效滑模控制, 横摆稳定性, 转矩分配

Abstract: Multi-wheel independent electric articulated bus both has mechanical characteristics of articulated vehicles and dynamic characteristics of distributed drive, aiming at the problems of folding, tailing and yaw which may occur during its limited conditions, and the yaw stability control research is carried out. A linear three-degree-of-freedom reference model is established, and the relevant state variables of the front compartment is estimated through particle filtering. The estimation results prove the validity of the model; the ideal response is obtained according to the three-degree-of-freedom reference model, and the idea of hierarchical control is adopted. The fuzzy equivalent switching sliding mode control is used in the upper layer. Joint control of yaw rate and articulation angle is adopted in the front compartment, and yaw rate control is adopted in the rear compartment, by which the additional yaw moment required is obtained; the lower layer adopts the quadratic programming method to optimize the torque distribution with the tire utilization rate as the optimization target. The simulation analysis of the steering angle step condition and the double lane change condition is carried out on the dSPACE-ASM platform. The results show that the control strategy can effectively improve the yaw stability of the vehicle under various working conditions. Compared with the equal torque distribution, the tire utilization rate is effectively reduced, and the control effect is more significant.

Key words: in-wheel drive, articulated bus, fuzzy equivalent control, yaw stability, torque distribution

中图分类号: