机械工程学报 ›› 2019, Vol. 55 ›› Issue (20): 128-151,159.doi: 10.3901/JME.2019.20.128
刘伟, 李能, 周标, 张国栋, 梁家誉, 郑涛, 熊华平
收稿日期:
2019-06-10
修回日期:
2019-09-05
出版日期:
2019-10-20
发布日期:
2020-01-07
通讯作者:
熊华平(通信作者),男,1969年出生,博士,研究员,博士研究生导师。主要研究方向为航空新材料的钎焊扩散焊、异种材料连接和激光增材制造等。E-mail:xionghuaping69@sina.cn,xionghp69@163.com
作者简介:
刘伟,男,1984年出生,博士。主要研究方向为金属材料与构件增材制造技术。E-mail:liuwei2011621@sina.com
基金资助:
LIU Wei, LI Neng, ZHOU Biao, ZHANG Guodong, LIANG Jiayu, ZHENG Tao, XIONG Huaping
Received:
2019-06-10
Revised:
2019-09-05
Online:
2019-10-20
Published:
2020-01-07
摘要: 增材制造具有逐点熔凝、分层制造的工艺特征,一方面可实现三维复杂结构零件的快速制造,另一方面可实现材料的高性能化。基于增材制造技术在复杂结构及高性能材料制备方面的巨大技术优势与应用前景,综述了增材制造技术在点阵结构、大型薄壁结构、复杂曲面结构、一体化结构等典型复杂结构,以及在铁基合金、镍基合金、钛基合金、铝基合金、金属间化合物、功能梯度材料、陶瓷等高性能材料方面的研究现状与技术进展,并对增材制造技术在结构设计、专用材料体系、新材料研发、修复与再制造以及数据库与标准等方向的未来发展趋势进行了展望。
中图分类号:
刘伟, 李能, 周标, 张国栋, 梁家誉, 郑涛, 熊华平. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128-151,159.
LIU Wei, LI Neng, ZHOU Biao, ZHANG Guodong, LIANG Jiayu, ZHENG Tao, XIONG Huaping. Progress in Additive Manufacturing on Complex Structures and High-performance Materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128-151,159.
[1] HUANG X,XIE M. Evolutionary topology optimization of continuum structures:methods and applications[M]. John Wiley & Sons,2010. [2] 黄卫东,林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展,2010,29(6):12-27. HUANG Weidong,LIN Xin. Research progress of high performance metal parts by laser stereoforming[J]. Progress of Materials in China,2010,29(6):12-27. [3] VRANCKEN B,THIJS L,KRUTH J P,et al. Heat treatment of Ti6Al4V produced by selective laser melting:microstructure and mechanical properties[J]. Journal of Alloys and Compounds,2012,541:177-185. [4] WANG Z,GUAN K,GAO M,et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys and Compounds,2012,513:518-523. [5] 林鑫,黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展,2015,34(9):684-688. LIN Xin,HUANG Weidong. Manufacturing technology of high performance metal additives for Aeronautics[J]. Progress of Materials in China,2015,34(9):684-688. [6] WANG F,WILLIAMS S,COLEGROVE P,et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A,2013,44(2):968-977. [7] TAMINGER K M,HAFLEV R A. Electron beam freeform fabrication for cost effective near-net shape manufacturing[C]//NATO/RTO AVT-139 Specialists" Meeting on Cost Effective Manufacture via Net Shape Processing; May 15-17,2006. Amsterdam,Netherlands. [8] ASHLEY S. Laser-formed titanium parts[J]. Mechanical Engineering,1998,120(9):12. [9] 赵冰,李志强,侯红亮,等. 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程,2016,45(8):2189-2200. ZHAO Bing,LI Zhiqiang,HOU Hongliang,et al. Progress in the preparation technology of metal three-dimensional lattice structures[J]. Rare metal materials and engineering,2016,45(8):2189-2200. [10] SCHAEDLER T A,JACOBSEN A J,TORRENTS A,et al. Ultralight metallic microlattices[J]. Science,2011,334(6058):962-965. [11] ZIGONEANU L,POPA B I,CUMMER S A. Three-dimensional broadband omnidirectional acoustic ground cloak[J]. Nature Materials,2014,13(4):352-355. [12] 曹鑫,党新安,杨立军. 多孔钛支架表面羟基磷灰石的仿生生长[J]. 硅酸盐学报,2015,43(6):823-828. CAO Xin,DANG Xinan,YANG Lijun. Biomimetic growth of hydroxyapatite on porous titanium scaffolds[J]. Journal of Silicate,2015,43(6):823-828. [13] Van BAEL S,CHAI Y C,TRUSCELLO S,et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds[J]. Acta Biomaterialia,2012,8(7):2824-2834. [14] CHEN S Y,HUANG J C,PAN C T,et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting[J]. Journal of Alloys and Compounds,2017,713:248-254. [15] ZHANG S,WEI Q,CHENG L,et al. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting[J]. Materials & Design,2014,63:185-193. [16] SHI Q,GU D,XIA M,et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites[J]. Optics & Laser Technology,2016,84:9-22. [17] 苏旭彬. 基于选区激光熔化的功能件数字化设计与直接制造研究[D]. 广州:华南理工大学,2011. SU Xubin. Research on digital design and direct manufacturing of functional parts based on selective laser melting[D]. Guangzhou:South China University of Technology,2011. [18] PARRY L,ASHCROFT I A,WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing,2016,12:1-15. [19] 吴伟辉,杨永强. 选区激光熔化快速成形系统的关键技术[J]. 机械工程学报,2007,43(8):175-180. WU Weihui,YANG Yongqiang. Key technologies of selective laser melting rapid prototyping system[J]. Chinese Journal of Mechanical Engineering,2007,43(8):175-180. [20] PYKA G,BURAKOWSKI A,KERCKHOFS G,et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing[J]. Advanced Engineering Materials,2012,14(6):363-370. [21] 王健飞,陈长军,王晓南,等. 激光3D打印制备多孔结构不锈钢的组织及压缩性能研究[J]. 机械工程学报,2016,52(21):206-212. WANG Jianfei,CHEN Changjun,WANG Xiaonan,et al. Microstructure and compressive properties of porous stainless steel prepared by laser 3D printing[J]. Journal of Mechanical Engineering,2016,52(21):206-212. [22] PAUL C P,MISHRA S K,KUMAR A,et al. Laser rapid manufacturing on vertical surfaces:Analytical and experimental studies[J]. Surface and Coatings Technology,2013,224:18-28. [23] ALIMARDANI M,TOYSERKANI E. Prediction of laser solid freeform fabrication using neuro-fuzzy method[J]. Applied Soft Computing,2008,8(1):316-323. [24] PONCHE R,KERBRAT O,MOGNOL P,et al. A novel methodology of design for additive manufacturing applied to additive laser manufacturing process[J]. Robotics and Computer-Integrated Manufacturing,2014,30(4):389-398. [25] MAHMOOD K,PINKERTON A J. Direct laser deposition with different types of 316L steel particle:a comparative study of final part properties[J]. Proceedings of the Institution of Mechanical Engineers,Part Journal of Engineering Manufacture,2013,227(4):520-531. [26] LIU J,LI L. Effects of powder concentration distribution on fabrication of thin-wall parts in coaxial laser cladding[J]. Optics & Laser Technology,2005,37(4):287-292. [27] 王涛,傅戈雁,石世宏. 基于嵌入式机器视觉的激光熔覆成形熔池离焦量在线测控系统[J]. 中国激光,2015,42(3):120-127. WANG Tao,FU Geyan,SHI Shihong. On-line defocusing measurement and control system for laser cladding pool based on embedded machine vision[J]. China Laser,2015,42(3):120-127. [28] 朱刚贤,张安峰,李涤尘,等. 激光金属制造薄壁零件z轴单层行程模型[J]. 焊接学报,2010,31(8):57-60. ZHU Gangxian,ZHANG Anfeng,LI Dichen,et al. Z-axis single-layer travel model for thin-walled parts manufactured by laser metal[J]. Journal of Welding,2010,31(8):57-60. [29] DOAN T,李涤尘,卢秉恒,等. 扫描方式对激光金属直接成形DZ125L高温合金薄壁件开裂的影响[J]. 中国激光,2012,39(10):38-45. DOAN T,LI Dichen,LU Bingheng,et al. Effect of scanning mode on cracking of DZ125L superalloy thin-walled parts directly formed by laser metal[J]. China Laser,2012,39(10):38-45. [30] 吴少华,石世宏,肖军艳,等. 环形激光光内送粉成形薄壁件熔池特征研究[J]. 应用激光,2013,33(3):250-253. WU Shaohua,SHI Shihong,XIAO Junyan,et al. Study on the characteristics of molten pool of thin-walled parts formed by ring laser powder feeding[J]. Applied Laser,2013,33(3):250-253. [31] SHI T,LU B,SHI S,et al. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology[J]. Optics & Laser Technology,2017,88:234-241. [32] MILEWSKI J O,LEWIS G K,THOMA D J,et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition[J]. Journal of Materials Processing Technology,1998,75(1-3):165-172. [33] 尚晓峰,刘伟军,王维,等. 金属粉末激光成形零件倾斜极限[J]. 机械工程学报,2007,43(8):97-100. SHANG Xiaofeng,LIU Weijun,WANG Wei,et al. Tilt limit of metal powder laser forming parts[J]. Journal of Mechanical Engineering,2007,43(8):97-100. [34] 王续跃,王彦飞,江豪,等. 圆形倾斜薄壁件的激光熔覆成形[J]. 中国激光,2014,41(1):84-89. WANG Xuyue,WANG Yanfei,JIANG Hao,et al. Laser cladding of circular inclined thin-walled parts[J]. China Laser,2014,41(1):84-89. [35] GRIFFITH M L,KEICHER D M,ATWOOD C L,et al. Free form fabrication of metallic components using laser engineered net shaping (LENS)[C]//1996 International Solid Freeform Fabrication Symposium,1996. [36] 刘业胜,韩品连,胡寿丰,等. 金属材料激光增材制造技术及在航空发动机上的应用[J]. 航空制造技术,2014,454(10):62-67. LIU Yesheng,HAN Pinlian,HU Shoufeng,et al. Manufacturing technology of metal material laser augmentation and its application in Aeroengine[J]. Aviation Manufacturing Technology,2014,454(10):62-67. [37] CHEN Y H,CHEN Z Z. Major factors in rapid prototyping of mechanisms[C]//Key Engineering Materials. Trans Tech Publications,2010,443:516-521. [38] 章媛洁,宋波,赵晓,等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢:表面粗糙度与残余应力演变规律研究[J]. 机械工程学报,2018,54(13):170-178. ZHANG Yuanjie,SONG Bo,ZHAO Xiao,et al. Manufacturing AISI 420 stainless steel by laser selective melting and adding materials and machining:study on the evolution law of surface roughness and residual stress[J]. Journal of Mechanical Engineering,2018,54(13):170-178. [39] 文聘,叶红玲,杨庆生. 激光选区烧结马氏体时效钢多孔框架的微结构缺陷及力学性能影响分析[J]. 机械工程学报,2018,54(17):173-180. WEN Pin,YE Hongling,YANG Qingsheng. Analysis of microstructure defects and mechanical properties of laser selective sintering maraging steel porous frame[J]. Journal of Mechanical Engineering,2018,54(17):173-180. [40] SIMCHI A. Direct laser sintering of metal powders:Mechanism,kinetics and microstructural features[J]. Materials Science and Engineering:A,2006,428(1-2):148-158. [41] KRUTH J P,FROYEN L,VAN VAERENBERGH J,et al. Selective laser melting of iron-based powder[J]. Journal of materials processing technology,2004,149(1-3):616-622. [42] 赵晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究[D]. 武汉:华中科技大学,2016. ZHAO Xiao. Basic research on microstructure and properties evolution of die steel material for laser selective melting forming[D]. Wuhan:Huazhong University of Science and Technology,2016. [43] WANG Y M,VOISIN T,MCKEOWN J T,et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials,2018,17(1):63-71. [44] LIN X,CAO Y,WU X,et al. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel[J]. Materials Science and Engineering:A,2012,553:80-88. [45] QIN R,ZHANG X,GUO S,et al. Laser cladding of high Co-Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surface and Coatings Technology,2016,285:242-248. [46] WANJARA P,BROCHU M,JAHAZI M. Electron beam freeform fabrication on stainless steel[C]//Materials Science Forum. Trans Tech Publications,2007,539:4938-4943. [47] GU D D,MEINERS W,WISSENBACH K,et al. Laser additive manufacturing of metallic components:materials,processes and mechanisms[J]. International Materials Reviews,2012,57(3):133-164. [48] 赵卫卫,林鑫,刘奋成,等. 热处理对激光立体成形Inconel 718高温合金组织和力学性能的影响[J]. 中国激光,2009,36(12):3220-3225. ZHAO Weiwei,LIN Xin,LIU Fencheng,et al. Effect of heat treatment on microstructure and mechanical properties of laser solid forming Inconel 718 superalloy[J].China Laser,2009,36(12):3220-3225. [49] 刘奋成,林鑫,杨高林,等. 不同气氛激光立体成形镍基高温合金Inconel 718的显微组织和力学性能[J]. 金属学报,2010,46(9):1047-1054. LIU Fencheng,LIN Xin,YANG Gaolin,et al. Microstructure and mechanical properties of laser stereoforming nickel-based superalloy Inconel 718 in different atmospheres[J]. Journal of Metals,2010,46(9):1047-1054. [50] 宋衎,喻凯,林鑫,等. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能[J]. 金属学报,2015,51(8):935-942. SONG Ju,YU Kai,LIN Xin,et al. Microstructure and mechanical properties of heat treated laser solid forming Inconel 718 superalloy[J]. Journal of Metals,2015,51(8):935-942. [51] TIAN Y,MCALLISTER D,COLIJN H,et al. Rationalization of microstructure heterogeneity in Inconel 718 builds made by the direct laser additive manufacturing process[J]. Metallurgical and Materials Transactions A,2014,45(10):4470-4483. [52] ZHANG Y,LI Z,NIE P,et al. Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating[J]. Metallurgical and Materials Transactions A,2013,44(2):708-716. [53] TABERNERO I,LAMIKIZ A,MARTÍNEZ S,et al. Evaluation of the mechanical properties of Inconel 718 components built by laser cladding[J]. International Journal of Machine Tools and Manufacture,2011,51(6):465-470. [54] MATZ J E,EAGAR T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transactions A,2002,33(8):2559-2567. [55] TAYON W A,SHENOY R N,REDDING M K R,et al. Correlation between microstructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication[J]. Journal of Manufacturing Science and Engineering,2014,136(6):061005. [56] HUNT J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering,1984,65(1):75-83. [57] KURZ W,BEZENCON C,GÄUMANN M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials,2001,2(1):185-191. [58] GÄUMANN M,BEZENCON C,CANALIS P,et al. Single-crystal laser deposition of superalloys:processing-microstructure maps[J]. Acta Materialia,2001,49(6):1051-1062. [59] GÄUMANN M,TRIVEDI R,KURZ W. Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering:A,1997,226:763-769. [60] LIN X,LI Y,WANG M,et al. Columnar to equiaxed transition during alloy solidification[J]. Science in China Series E:Technological Sciences,2003,46(5):475-489. [61] 林鑫,李延民,王猛,等. 合金凝固列状晶/等轴晶转变[J]. 中国科学:E辑,2003,33(7):577-588. LIN Xin,LI Yanmin,WANG Meng,et al. Alloy solidified columnar/equiaxed crystal transition[J]. Chinese Science:Series E,2003,33(7):577-588. [62] 汤海波,王华明,田象军,等. 激光熔化沉积增材制造镍基高温合金微细柱晶组织研究[C]//第十一届中国钢铁年会论文集-S13. 高温合金,2017. TANG Haibo,WANG Huaming,TIAN Xiangjun,et al. Study on the fine columnar structure of nickel-based superalloy fabricated by laser melt deposition additives[C]//Papers of the 11th Annual Conference of China Iron and Steel-S13. Superalloy,2017. [63] KÖRNER C,RAMSPERGER M,MEID C,et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing[J]. Metallurgical and Materials Transactions A,2018,49(9):3781-3792. [64] WANG T,ZHU Y Y,ZHANG S Q,et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds,2015,632:505-513. [65] 王华明,张述泉,王韬,等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报,2018(4):9-14. WANG Huaming,ZHANG Shuquan,WANG Tao,et al. Progress in the control of solidification grain morphology and microstructures of large titanium alloy components with high performance fabricated by laser augmentation[J]. Journal of Xihua University,2018(4):9-14. [66] LACH C L,TAMINGER K,SCHUSZLER A,et al. Effect of electron beam freeform fabrication (EBF3) processing parameters on composition of Ti-6-4[J]. AeroMat,2007:1-19. [67] BRICE C A,ROSENBERGER B T,SANKARAN S N,et al. Chemistry control in electron beam deposited titanium alloys[C]//Materials Science Forum. Trans Tech Publications,2009,618:155-158. [68] 陈玮,李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术,2018,61(10):30-37. CHEN Wei,LI Zhiqiang. Opportunities and challenges in the manufacture of aeronautical titanium alloy additives[J]. Aeronautical Manufacturing Technology,2018,61(10):30-37. [69] 王沛,黄正华,戚文军,等. 钛合金3D打印技术的应用及研究现状[J]. 材料科学,2017,7(3):275-282. WANG Pei,HUANG Zhenghua,QI Wenjun,et al. Application and research status of titanium alloy 3D printing technology[J]. Material Science,2017,7(3):275-282. [70] GONZALES D,LIU S,DOMACK M,et al. Using powder cored tubular wire technology to enhance electron beam freeform fabricated structures[C]//TMS 2016145th Annual Meeting & Exhibition. Springer,Cham,2016:183-189. [71] CAO F,JIA Y,PRASHANTH K G,et al. Evolution of microstructure and mechanical properties of as-cast Al-50Si alloy due to heat treatment and P modifier content[J]. Materials & Design,2015,74:150-156. [72] VORA P,MUMTAZ K,TODD I,et al. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting[J]. Additive Manufacturing,2015,7:12-19. [73] THIJS L,KEMPEN K,KRUTH J P,et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia,2013,61(5):1809-1819. [74] KEMPEN K,THIJS L,YASA E,et al. Process optimization and microstructural analysis for selective laser melting of AlSi10Mg[C]//Solid Freeform Fabrication Symposium. 2011,22:484-495. [75] LOUVIS E,FOX P,SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology,2011,211(2):275-284. [76] 赵官源,王东东,白培康,等. 铝合金激光快速成型技术研究进展[J]. 热加工工艺,2010,39(9):170-173. ZHAO Guanyuan,WANG Dongdong,BAI Peikang,et al. Progress in laser rapid prototyping technology for aluminium alloys[J]. Hot Processing Technology,2010,39(9):170-173. [77] BRICE C A,DENNIS N. Cooling rate determination in additively manufactured aluminum alloy 2219[J]. Metallurgical and Materials Transactions A,2015,46(5):2304-2308. [78] BRICE C,SHENOY R,KRAL M,et al. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Materials Science and Engineering:A,2015,648:9-14. [79] 于菁. 电子束3D打印用铝基材料及其成形性能的研究[D]. 沈阳:沈阳航空航天大学,2018. YU Jing. Aluminum-based materials for electron beam 3D printing and their formability[D]. Shenyang:Shenyang University of Aeronautics and Astronautics,2018. [80] GU J L,DING J L,CONG B Q,et al. The influence of wire properties on the quality and performance of wire+arc additive manufactured aluminium parts[J]. Advanced Materials Research,2014(8):210-214. [81] GU J L,DING J L,WILLIAMS S W,et al. High performance aluminium properties for space applications using wire+arc additive manufacturing[C]//Proceedings of the 1st Metallic Materials and Processes:Industrial Challenges. Deauville,2015. [82] RYAN E M,SABIN T J,WATTS J F,et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology,2018,262:577-584. [83] QI Z W,CONG B Q,QI B J,et al. Properties of wire+arc additively manufactured 2024 aluminum alloy with different solution treatment temperature[J]. Materials Letters,2018(230):275-278. [84] QI Z W,CONG B Q,QI B J,et al. Microstructure and mechanical properties of double-wire+arc additively manufactured Al-Cu-Mg alloys[J]. Journal of Materials Processing Tech,2018(255):347-353. [85] 孙红叶,从保强,苏勇,等. Al-6.3Cu铝合金电弧填丝增材制造成形与组织性能[J]. 航空制造技术,2017(14):72-76. SUN Hongye,CONG Baoqiang,SU Yong,et al. Al-6.3Cu aluminum alloy arc filling material manufacturing,forming and structure properties[J]. Aviation Manufacturing Technology,2017(14):72-76. [86] 李权,王福德,王国庆,等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术,2018(3):74-83. LI Quan,WANG Fude,WANG Guoqing,et al. Manufacturing technology of arc fuse augmentation for aerospace lightweight metal materials[J]. Aviation Manufacturing Technology,2018(3):74-83. [87] ZHANG C,LI Y,GAO M,et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source[J]. Materials Science & Engineering A,2018(711):415-423. [88] BAI J Y,FAN C L,LIN S,et al. Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment[J]. Journal of Materials Engineering and Performance,2017(4):1808-1816. [89] MURR L E,GAYTAN S M,CEYLAN A,et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia,2010,58(5):1887-1894. [90] SCHWERDTFEGER J,KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr:Microstructure and aluminium loss[J]. Intermetallics,2014,49:29-35. [91] LÖBER L,SCHIMANSKY F P,KÜHN U,et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology,2014,214(9):1852-1860. [92] 张永忠,黄灿,吴复尧,等. 激光熔化沉积γ-TiAl合金的组织及力学性能[J]. 中国激光,2010(10):2684-2688. ZHANG Yongzhong,HUANG Can,WU Fuyao,et al. Microstructure and mechanical properties of laser melt deposited gamma-TiAl alloy[J]. China Laser,2010(10):2684-2688. [93] 索德军. 钛铝合金将用于制造LEAP发动机低压涡轮转子叶片[J]. 航空发动机,2014,40(3):84. SUO Dejun. Titanium-aluminium alloy will be used to manufacture low pressure turbine rotor blades of LEAP engine[J]. Aeroengine,2014,40(3):84. [94] LIU W,XIONG H P,LI N,et al. Microstructure characteristics and mechanical properties of nb-17si-23ti ternary alloys fabricated by in situ reaction laser melting deposition[J]. Acta MetallurgicaSinica (English Letters),2018,31(4):362-370. [95] LIU W,SHA J B. Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16Si-based alloys prepared via spark plasma sintering[J]. Materials & Design,2016,111:301-311. [96] 刘伟,熊华平,李能,等. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程,2018,46(2):27-33. LIU Wei,XIONG Huaping,LI Neng,et al. The effect of laser melting deposition process on the microstructure of Nb-16Si binary alloy[J]. Material Engineering,2018,46(2):27-33. [97] GUO Y,JIA L,SUN S,et al. Rapid fabrication of Nb-Si based alloy by selective laser melting:microstructure,hardness and initial oxidation behavior[J]. Materials & Design,2016,109:37-46. [98] 刘伟,熊华平,唐思熠. Si元素含量对激光快速成形制备Nb-Si二元合金显微组织演变的影响[J]. 焊接学报,2017,38(3):53-56. LIU Wei,XIONG Huaping,TANG Siyi. Effect of Si content on microstructure evolution of Nb-Si binary alloy prepared by laser rapid prototyping[J]. Journal of Welding,2017,38(3):53-56. [99] COLLINS P C,BANERJEE R,BANERJEE S,et al. Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys[J]. Materials Science & Engineering A,2003,352:118-128. [100] BANERJEE R,COLLINS P C,BHATTACHARYYA D,et al. Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys[J]. Acta Materialia,2003,51(11):3277-3292. [101] DUTTA M J,MANNA I,KUMAR A,et al. Direct laser cladding of Co on Ti-6Al-4V with a compositionally graded interface[J]. Journal of Materials Processing Technology,2009,209(5):2237-2243. [102] QU H P,LI P,ZHANG S Q,et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material[J]. Materials & Design,2010,31(1):574-582. [103] LIN X,YUE T M,YANG H O,et al. Laser rapid forming of SS316L/Rene88DT graded material[J]. Materials Science & Engineering A,2005,391(1-2):325-336. [104] LIN X,YUE T M,YANG H O,et al. Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88 DT alloy[J]. Metallurgical and Materials Transactions A,2007,38(1):127-137. [105] 张永忠,刘彦涛,曹晔. 激光快速成形梯度复合结构的研究进展[J]. 航空制造技术,2015,479(10):44-47. ZHANG Yongzhong,LIU Yantao,CAO Ye. Research progress of gradient composite structure in laser rapid prototyping[J]. Aviation Manufacturing Technology,2015,479(10):44-47. [106] 刘彦涛,宫新勇,刘铭坤,等. 激光熔化沉积Ti2AlNb基合金的显微组织和拉伸性能[J]. 中国激光,2014(1):71-77. LIU Yantao,GONG Xinyong,LIU Mingkun,et al. Microstructure and tensile properties of Ti2AlNb-based alloys deposited by laser melting[J]. China Laser,2014(1):71-77. [107] ZHANG Y,WEI Z,SHI L,et al. Characterization of laser powder deposited Ti-TiC composites and functional gradient materials[J]. Journal of Materials Processing Technology,2008,206(1-3):438-444. [108] 蔡利芳,张永忠,席明哲,等. 原位合成法在材料制备中的应用及进展[J]. 金属热处理,2005,30(10):1-6. CAI Lifang,ZHANG Yongzhong,XI Mingzhe,et al. Application and progress of in-situ synthesis in material preparation[J]. Metal Heat Treatment,2005,30(10):1-6. [109] LIU W,DUPONT J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping[J]. Scripta Materialia,2003,48(9):1337-1342. [110] MAHAMOOD R M,AKINLABI E T. Laser metal deposition of functionally graded Ti6Al4V/TiC[J]. Materials & Design,2015,84:402-410. [111] WANG F,MEI J,WU X. Compositionally graded Ti6Al4V+TiC made by direct laser fabrication using powder and wire[J]. Materials & Design,2007,28(7):2040-2046. [112] WANG F,MEI J,WU X. Direct laser fabrication of Ti6Al4V/TiB[J]. Journal of Materials Processing Technology,2008,195(1-3):321-326. [113] LI S N,XIONG H P,LI N,et al. Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding[J]. Ceramics International,2017,43(1):961-967. [114] LI N,XIONG Y,XIONG H,et al. Microstructure,formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization,2019,148:43-51. [115] 李能,熊华平,秦仁耀,等. 原位反应制备Ti2AlNb/TiC+i3SiC2梯度材料的激光熔覆组织及成形机理[J]. 机械工程学报,2018,54(8):144-150. LI Neng,XIONG Huaping,QIN Renyao,et al. Microstructure and forming mechanism of Ti2AlNb/TiC+Ti3SiC2 gradient materials prepared by in situ reaction[J]. Journal of Mechanical Engineering,2018,54(8):144-150. [116] BALLA V K,DEVASCONCELLOS P D,XUE W,et al. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS)[J]. Acta Biomaterialia,2009,5(5):1831-1837. [117] SHI Y,LI Y,LIU J,et al. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel[J]. Optics & Laser Technology,2018,99:256-270. [118] MULLEN L,STAMP R C,BROOKS W K,et al. Selective laser melting:A regular unit cell approach for the manufacture of porous,titanium,bone in-growth constructs,suitable for orthopedic applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials:An Official Journal of The Society for Biomaterials,The Japanese Society for Biomaterials,and The Australian Society for Biomaterials and the Korean Society for Biomaterials,2009,89(2):325-334. [119] BERTRAND P,BAYLE F,COMBE C,et al. Ceramic components manufacturing by selective laser sintering[J]. Applied Surface Science,2007,254(4):989-992. [120] SUBRAMANIAN K,VAIL N,BARLOW J,et al. Selective laser sintering of alumina with polymer binders[J]. Rapid Prototyping Journal,1995,1(2):24-35. [121] SHAHZAD K,DECKERS J,BOURY S,et al. Preparation and indirect selective laser sintering of alumina/PA microspheres[J]. Ceramics International,2012,38(2):1241-1247. [122] CAI K,ROMÁN-MANSO B,SMAY J E,et al. Geometrically complex silicon carbide structures fabricated by robocasting[J]. Journal of the American Ceramic Society,2012,95(8):2660-2666. [123] XING Z,LIU W,CHEN Y,et al. Effect of plasticizer on the fabrication and properties of alumina ceramic by stereolithography-based additive manufacturing[J]. Ceramics International,2018,44(16):19939-19944. [124] SHISHKOVSKY I,YADROITSEV I,BERTRAND P,et al. Alumina-zirconium ceramics synthesis by selective laser sintering/melting[J]. Applied Surface Science,2007,254(4):966-970. [125] SHAHZAD K,DECKERS J,KRUTH J P,et al. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing[J]. Journal of Materials Processing Technology,2013,213(9):1484-1494. [126] LI F,ZHANG X,SUI C,et al. Microstructure and mechanical properties of Al2O3-ZrO2 ceramic deposited by laser direct material deposition[J]. Ceramics International,2018,44(15):18960-18968. [127] LI Y,HU Y,CONG W,et al. Additive manufacturing of alumina using laser engineered net shaping:Effects of deposition variables[J]. Ceramics International,2017,43(10):7768-7775. [128] HU Y,CONG W. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J]. Ceramics International,2018,44(17):20599-20612. [129] WILKES J,HAGEDORN Y C,MEINERS W,et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal,2013,19(1):51-57. |
[1] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[2] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[3] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[4] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[5] | 刘鑫, 张俊, 徐斌斌, 刘弘光, 赵万华. 激光辅助铣削过程的预热温度场调控方法研究[J]. 机械工程学报, 2024, 60(9): 218-228. |
[6] | 郝明武, 姚鹏, 周嘉斌, 黎月明, 梁士通, 褚东凯, 黄传真. 皮秒激光切向修整青铜结合剂金刚石砂轮的影响因素研究[J]. 机械工程学报, 2024, 60(9): 229-240. |
[7] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[8] | 江安娜, 言兰, 王宁昌, 姜峰, 李卓, 温秋玲, 卢希钊, 黄辉. 能量场辅助激光诱导等离子体加工透明硬脆材料的研究现状及发展趋势[J]. 机械工程学报, 2024, 60(9): 254-272. |
[9] | 邱文哲, 张臻, 王鹏, 刘邓华, 魏世川, 张国军. 激光浸液诱导冲击调控电火花线切割热变形行为[J]. 机械工程学报, 2024, 60(9): 273-285. |
[10] | 王湃, 白翌帆, 赵文祥, 张毅博, 刘志兵. 高温合金短电弧辅助铣削表面完整性演化研究[J]. 机械工程学报, 2024, 60(9): 434-444. |
[11] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[12] | 张春波, 吴成军, 袁浩天. 等离子体作用下不同脉冲数超快激光烧蚀过程中化学反应机制的数值模拟[J]. 机械工程学报, 2024, 60(8): 94-106. |
[13] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[14] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[15] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||