• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (17): 61-67.doi: 10.3901/JME.2019.17.061

• 特邀专栏:焊接机器人 • 上一篇    下一篇

扫码分享

旋转磁场下焊接缺陷磁光成像检测与强分类研究

高向东, 郑俏俏, 王春草   

  1. 广东工业大学广东省焊接工程技术研究中心 广州 510006
  • 收稿日期:2018-09-25 修回日期:2019-03-01 出版日期:2019-09-05 发布日期:2020-01-07
  • 通讯作者: 高向东(通信作者),男,1963年出生,教授,博士研究生导师。主要研究方向为焊接自动化。E-mail:gaoxd666@126.com
  • 作者简介:郑俏俏,女,1993年出生,硕士研究生。主要研究方向为无损检测。E-mail:13246883775@163.com;王春草,女,1993年出生,硕士研究生。主要研究方向为无损检测。E-mail:18680529185@163.com
  • 基金资助:
    国家自然科学基金(51675104)、广东省科技计划(2016A010102015)和广东省教育厅创新团队(2017KCXTD010)资助项目。

Magneto-optical Imaging Detection and Strong Classification of Weld Defects in Rotating Magnetic Field

GAO Xiangdong, ZHENG Qiaoqiao, WANG Chuncao   

  1. Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006
  • Received:2018-09-25 Revised:2019-03-01 Online:2019-09-05 Published:2020-01-07

摘要: 焊接缺陷的准确检测与分类对保证焊接产品质量十分重要。研究一种旋转磁场激励下焊接缺陷的磁光成像无损检测方法。分析基于法拉第磁光效应的焊接缺陷磁光成像机理,使用有限元法对焊接缺陷的磁场分布进行数值模拟与分析,并获得磁光图像采集的最佳提离度。分析旋转磁场形成机理,使用交叉磁轭产生旋转磁场激励焊件,通过磁光成像传感器获取焊接缺陷磁光图像。采用主成分分析法(Principal component analysis,PCA)对采集的磁光图像列像素灰度特征进行提取与降维,使用AdaBoost算法结合误差反向传播(Back propagation,BP)神经网络建立BP-AdaBoost焊接缺陷强分类模型。试验结果表明,所提出的方法可有效提高45钢焊接缺陷(弧形裂纹、线形裂纹、凹坑、未熔透)的分类精度,焊接缺陷强分类模型的整体识别率达到98.88%,有效实现焊接缺陷的检测与分类。

关键词: 焊接缺陷, 旋转磁场, 磁光检测, 有限元仿真, 主成分分析, BP-AdaBoost强分类器

Abstract: Accurate detection and classification of weld defects plays an important role in ensuring the quality of welding products. A magneto-optical imaging nondestructive detection method of weld defects under rotating magnetic field excitation is studied. The mechanism of magneto-optical imaging of weld defects based on Faraday magneto-optical effect is analyzed, the magnetic field distribution of weld defects is analyzed by using finite element simulation, and a best lift-off degree is found to collect magneto-optical images. The mechanism of rotating magnetic field is analyzed, a pair of cross yokes is used to generate a rotating magnetic to excite the weldment. Also, a magneto-optical sensor is used to obtain the images of weld defects. Using PCA to extract and reduce the dimension of gray-scale features of column pixels in magneto-optical images, the AdaBoost algorithm combined with BP neural network is used to establish a BP-AdaBoost weld defects classification model. Experimental results show that the proposed method can effectively improve the recognition accuracy of No.45 steel weld joint defects (curve crack, linear crack, sag, less penetration), the overall recognition rate of BP-AdaBoost weld defects classification model reaches 98.88%, and the detection and classification of weld defects can be realized effectively.

Key words: weld defects, rotating magnetic field, magneto-optical detection, finite element simulation, PCA, BP-AdaBoost strong classifier

中图分类号: