• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (1): 149-159.doi: 10.3901/JME.2019.01.149

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

一种面向低碳设计的多属性相似实例检索方法

任设东1, 赵燕伟1, 洪欢欢2, 桂方志1, 谢智伟1   

  1. 1. 浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室 杭州 310014;
    2. 宁波大学高等技术研究院 宁波 315211
  • 收稿日期:2018-01-30 修回日期:2018-06-02 出版日期:2019-01-05 发布日期:2019-01-05
  • 通讯作者: 赵燕伟(通信作者),女,1959年出生,博士,教授,博士研究生导师。主要研究方向为数字化设计与制造、可拓设计方法学、低碳设计。E-mail:zyw@zjut.edu.cn
  • 作者简介:任设东,男,1989年出生,博士研究生。主要研究方向为产品低碳设计、可拓设计。E-mail:renshedong@zjut.edu.cn
  • 基金资助:
    国家自然科学基金(61572438,51605231)和浙江省公益技术应用研究计划资助项目。

A Retrieval Method for Similar Cases with Multiple Attributes in Low-carbon Design

REN Shedong1, ZHAO Yanwei1, HONG Huanhuan2, GUI Fangzhi1, XIE Zhiwei1   

  1. 1. Key Lab of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014;
    2. The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211
  • Received:2018-01-30 Revised:2018-06-02 Online:2019-01-05 Published:2019-01-05

摘要: 低碳设计纳入产品全生命周期对环境的影响因素,是协调产品常规性能与低碳性能的回溯设计过程。设计知识重用技术在已有设计知识的基础上提高产品低碳设计效率,而知识重用的前提是相似实例的检索。提出一种基于关联函数的多属性相似实例检索方法,结合原有多维关联函数构造方法和侧距原理,将可拓一维关联函数拓展到多维,从最优点只在中点的应用条件推广到最优点在区间内任意点;推导出多维关联函数的降维计算规则,构建相似度函数。该方法应用于螺杆空压机多维低碳属性需求检索,计算结果与实例空间位置关系相一致;并与欧式几何距方法和KNN分类检索方法进行对比分析,分析表明基于关联函数的方法与欧式几何距方法检索结果一致,并且能够克服欧式距忽略属性物理含义造成检索不合理的缺陷;与KNN方法的检索分类结果一致,同时每维属性关联函数值可以作为对应属性修改难度的参考评价。

关键词: 多维属性, 关联函数, 降维, 实例检索, 知识重用

Abstract: Environmental factors are taken into account for low-carbon design in product life cycle, which is a multiple backs design process in balancing conventional performance and low-carbon performance. Efficiency and effectiveness of low-carbon design are promoted with knowledge reuse technique; however, the premise is similar cases retrieval. A retrieval method based on the dependent function is proposed. Firstly, previous construction method of multi-dimensional dependent function and mathematical principle of side distance are combined, the one-dimensional dependent function is expanded to the multi-dimensional dependent function, and application condition is also improved by setting the optimal point only in geometric center to arbitrary point. Rule of dimensionality reduction for multi-dimensional dependent function is derived, and similarity function is constructed. In final, the proposed method is applied to attributes retrieval for screw compressor cases, and the computational result is consistent with the spatial position of each case. Comparisons are analyzed with Euclidean geometry distance method and the KNN classification method; it reveals that the weakness of unreasonable retrieval due to the neglected natural property of each attribute is overcome by proposed method, and the retrieval result is similar to that of the Euclidean geometry distance method; the classification result is equal to that of KNN method, and each one-dimensional dependent function value can be taken as the criteria for adaptation of attributes.

Key words: cases retrieval, dependent function, dimensionality reduction, knowledge reuse, multiple attributes

中图分类号: