机械工程学报 ›› 2019, Vol. 55 ›› Issue (1): 1-16.doi: 10.3901/JME.2019.01.001
• 机械动力学 • 下一篇
高海波, 郑军强, 刘振, 王亚彬, 于海涛, 邓宗全
收稿日期:
2018-05-11
修回日期:
2018-09-11
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘振(通信作者),男,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为宇航空间机构与控制、星球车低重力模拟。E-mail:liuzhen_hit@163.com
作者简介:
高海波,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为宇航空间机构与控制、特种移动机器人。E-mail:gaohaibo@hit.edu.cn;郑军强,男,1986年出生,博士研究生。主要研究方向为宇航空间机构与控制、轮式移动机器人。E-mail:zhengjunqiang@hit.edu.cn
基金资助:
GAO Haibo, ZHENG Junqiang, LIU Zhen, WANG Yabin, YU Haitao, DENG Zongquan
Received:
2018-05-11
Revised:
2018-09-11
Online:
2019-01-05
Published:
2019-01-05
摘要: 为了解决轮式火星探测车在松软地面上的通过性受到轮-地作用机制限制的问题,提出一种具备轮-步复合移动能力的四轮火星探测车构型。基于地面力学数值计算方法对制动轮附着力和驱动轮牵引力进行了比较,明确了该车的地面力学机理。提出一种双摆杆式步行机构,确定了移动系统结构。利用带传动关联双摆杆步行机构的两个回转运动,使其比独立驱动具有更好的负载特性和功率特性。使用行星轮系和制动器实现轮行、步行、轮-步复合、制动四种运行状态,依托行星轮系实现轮-步匹配,使得轮-步复合移动的控制大幅简化。针对坡面行驶工况和坡面步行工况进行负载分析,给出了步行传动和车轮驱动传动的传动比计算方法和减速器布置,完成了轮-步复合移动机构设计和制造。分析了典型步态,并通过仿真方法对各步态下关节负载变化规律进行了分析。研究旨在拓展火星车研究理论和方法,为我国火星探测任务提供移动系统研制建议。
中图分类号:
高海波, 郑军强, 刘振, 王亚彬, 于海涛, 邓宗全. 轮-步复合式火星车移动系统设计及分析[J]. 机械工程学报, 2019, 55(1): 1-16.
GAO Haibo, ZHENG Junqiang, LIU Zhen, WANG Yabin, YU Haitao, DENG Zongquan. Design and Performance of a Wheel-legged Mobility System of Mars Rover[J]. Journal of Mechanical Engineering, 2019, 55(1): 1-16.
[1] BASILEVSKY A T,ABDRAKHIMOV A M,HEAD J W,et al. Geologic characteristics of the Luna 17/Lunokhod 1 and Chang' E-3/Yutu landing sites,North Mare Imbrium of the Moon[J]. Planetary and Space Science,2015,117:385-400. [2] DAVID B. NASA Mars rover manual:1997-2013(Sojourner,Spirit,Opportunity and Curiosity)[M]. London:Haynes Publishing UK,2013. [3] LAKDAWALLA E. The design and engineering of curiosity[M]. New York:Springer,2018. [4] DAVID P M,LEE T L. High-speed traversal of rough terrain using a rocker-bogie mobility system[C]//5th International Conference and Exposition on Robotics for Challenging Situations and Environments,March,17-21,2002,Albuquerque,New Mexico,United States:ASCE,2002:428-434. [5] JEFFREY E C. Simulation of a six wheeled Martian rover called the rocker bogie[D]. Ohio:Ohio State University,1992. [6] 李所军,高海波,邓宗全. 摇臂式月球车的运动学建模及悬架参数优化[J]. 西安交通大学学报,2009,43(9):62-66. LI Suojun,GAO Haibo,DENG Zongquan. Kinematics modeling of rocker-bogie lunar rover and suspension parameter optimization[J]. Journal of Xi'an Jiaotong University,2009,43(9):62-66. [7] KUMAR P,PATHAK P M. Dynamic modeling,simulation and velocity control of rocker-bogie rover for space exploration[J]. International Journal of Intelligent Mechatronics & Robotics,2017,1(2):27-41. [8] 黄卫东,鲍劲松,徐有生,等. 月球车坡路行驶地面力学模型与运动性能分析[J]. 机械工程学报,2013,49(5):17-23. HUANG Weidong,BAO Jinsong,XU Yousheng,et al. Terramechanics model and movement performance analysis of a lunar rover for slope travel[J]. Journal of Mechanical Engineering,2013,49(5):17-23. [9] BEKKER G. Theory of land locomotion (mechanism of vehicle mobility)[M]. Ann Arbor:University of Michigan Press,1956. [10] WONG J,REECE A R. Prediction of rigid wheel performance based on analysis of soil-wheel stresses[J]. Part I Performance of Driven Rigid Wheels,1967,4:81-98. [11] SENATORE C,IAGNEMMA K. Analysis of stress distributions under light weight wheeled vehicles[J]. Journal of Terramechanics,2014(51):1-17. [12] SHIRAI T,ISHIGAMI G. Development of in-wheel sensor system for accurate measurement of wheel terrain interaction characteristics[J]. Journal of Terramechanics,2015,62(8849):51-61. [13] SHIBLY H,IAGNEMMA K,DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain,with application to planetary exploration rovers[J]. Journal of Terramechanics,2005,42(1):1-13. [14] DING L,GAO H,DENG Z,et al. Experimental study and analysis on driving wheels' performance for planetary exploration rovers moving in deformable soil[J]. Journal of Terramechanics,2011,48(1):27-45. [15] 邹猛,李建桥,张金换,等. 月球车驱动轮在不同介质上的牵引性能[J]. 吉林大学学报,2010,40(1):25-29. ZOU Meng,LI Jianqiao,ZHANG Jinhuan,et al. Traction ability of lunar rover's driving wheel on different soils[J]. Journal of Jilin University,2010,40(1):25-29. [16] SMITH J A,SHARF I,TRENTINI M. PAW:A hybrid wheeled-leg robot[C]//IEEE International Conference on Robotics and Automation,May,15-19,2006,Orlando,Florida,United States:IEEE,2006:4043-4048. [17] GRAND C,BENAMAR F,PLUMET F. Motion kinematics analysis of wheeled-legged rover over 3D surface with posture adaptation[J]. Mechanism & Machine Theory,2010,45(3):477-495. [18] BARTLETT P W,WETTERGREEN D,WHITTAKER W L. The scarab rover as designed for lunar science and resource exploration[C]//Lunar and Planetary Science Conference,March,10-14,2008,League City,Texas,United States:SAO/NASA,2008:2120-2121. [19] TAROKH M,MCDERMOTT G. A systematic approach to kinematics modeling of high mobility wheeled rovers[C]//IEEE International Conference on Robotics and Automation,April,10-14,2007,Roma,Italy:IEEE,2007:4905-4910. [20] TAROKH M,HO H D,BOULOUBASIS A. Systematic kinematics analysis and balance control of high mobility rovers over rough terrain[J]. Robotics & Autonomous Systems,2013,61(1):13-24. [21] ZHENG J Q,GAO H. Design and terramechanics analysis of a Mars rover utilizing active suspension[J]. Mechanism and Machine Theory,2018,128:125-149. [22] RANKINE W J M. On the stability of loose earth[J]. Philosophical Transactions,1857,147:9-27. [23] SULLIVAN R,ANDERSON R,BIESIADECKI J,et al. Cohesions and friction angles of Martian regolith from MER wheel trenches[C]//41st Lunar and Planetary Science Conference,March,1-5,2010,Woodlands,Texas,United States:NASA,2010:1879-1880. [24] 杨怀广,丁亮,高海波,等. 星球车车轮原地转向沉陷试验及模型研究[J]. 机械工程学报,2017,53(8):100-108. YANG Huaiguang,DING Liang,GAO Haibo,et al. Experimental study and modeling of wheel's steering sinkage for planetary exploration rovers[J]. Journal of Mechanical Engineering,2017,53(8):100-108. [25] GUO J L,DING L,GAO H B. An apparatus to measure wheel-soil interactions on sandy terrains[J]. IEEE/ASME Transactions on mechatronics,2018,23(1):352-363. [26] 丁亮,高海波,邓宗全,等. 基于应力分布的月球车轮地相互作用地面力学模型[J]. 机械工程学报,2009,45(7):49-55. DING Liang,GAO Haibo,DENG Zongquan,et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution[J]. Journal of Mechanical Engineering,2009,45(7):49-55. [27] 肖万申,张岩. 载人月球车车轮设计及基于弹性车轮轮壤相互作用的力学模型研究[J]. 机械工程学报,2016,52(10):119-125. XIAO Wanshen,ZHANG Yan. Design of wheel of manned lunar rover and research on terramechanics model for wheel-terrain interaction based on elastic wheel[J]. Journal of Mechanical Engineering,2016,52(10):119-125. |
[1] | 张永顺, 刘高仁, 刘志军, 刘振虎, 董海. 新型电磁球型手腕解耦驱动机理[J]. 机械工程学报, 2024, 60(19): 1-10. |
[2] | 梁亮, 吴成东, 刘世昌. 基于关节损耗约束的工业机器人最优轨迹规划算法研究[J]. 机械工程学报, 2024, 60(19): 11-19. |
[3] | 王晓飞, 许家忠, 丁亮, 黄成, 杨怀广, 刘美军. 趋向性锁链式路径规划算法[J]. 机械工程学报, 2024, 60(19): 53-61. |
[4] | 杜国锋, 赵萌, 武建昫, 张东. 基于视觉的闭链多足机器人自主运动控制方法[J]. 机械工程学报, 2024, 60(19): 62-70. |
[5] | 关海杰, 王博洋, 龚建伟, 陈慧岩. 面向异构车辆的统一运动规划方法[J]. 机械工程学报, 2024, 60(18): 288-298. |
[6] | 秦岩丁, 蔡卓丛, 申亚京, 韩建达. 磁控式小型化医疗机器人研究综述与展望[J]. 机械工程学报, 2024, 60(17): 1-21. |
[7] | 郑思远, 田俊杰, 王立鹏, 刘世创, 王洪波, 牛建业. 紧凑型刚柔耦合腰部康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 156-166. |
[8] | 王耀南, 谢核, 邓晶丹, 毛建旭, 李文龙, 张辉. 智能制造测量机器人关键技术研究综述[J]. 机械工程学报, 2024, 60(16): 1-18. |
[9] | 付涛, 张天赐, 崔允浩, 宋学官. 深度学习增强的智能矿用电铲挖掘轨迹跟踪控制[J]. 机械工程学报, 2024, 60(16): 357-366. |
[10] | 宋荆洲, 宫兴龙, 段嘉辰, 张腾飞. 可跳跃移动机器人机构设计与跳跃过程控制研究综述[J]. 机械工程学报, 2024, 60(15): 1-17. |
[11] | 高海波, 王圣军, 单开正, 韩亮亮, 于海涛. 牵拉人工肌腱式双足机器人矢状面行走控制[J]. 机械工程学报, 2024, 60(15): 18-27. |
[12] | 蒋林, 李云飞, 汤勃, 刘奇, 郭宇飞, 赵慧. 基于语义物体尺寸链的改进自适应蒙特卡洛动态定位研究[J]. 机械工程学报, 2024, 60(15): 49-59. |
[13] | 张德权, 李星奥, 张宁, 宁国松, 韩旭. 工业机器人全域误差场精细化建模方法及其误差补偿策略[J]. 机械工程学报, 2024, 60(13): 316-329. |
[14] | 姚玉峰, 裴硕, 郭军龙, 王佳佳. 上肢康复机器人研究综述[J]. 机械工程学报, 2024, 60(11): 115-134. |
[15] | 刘亚军, 訾斌, 潘敬锋, 钱森. 时变时延下喷涂机器人双边遥操作位姿控制策略[J]. 机械工程学报, 2024, 60(11): 226-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||